Chirag Upreti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11116508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Scientific Reports, 2021, 11, 5552.	1.6	5
2	Impact of electrodiagnostic (EMG/NCS) tests on clinical decision-making and patient perceived benefit in the outpatient physical therapy practice. Journal of Bodywork and Movement Therapies, 2020, 24, 170-174.	0.5	0
3	Transcriptional and posttranscriptional regulation of the locus of enterocyte effacement in Escherichia albertii. Microbial Pathogenesis, 2019, 135, 103643.	1.3	2
4	Serotonin Induces Structural Plasticity of Both Extrinsic Modulating and Intrinsic Mediating Circuits InÂVitro in Aplysia Californica. Cell Reports, 2019, 28, 2955-2965.e3.	2.9	27
5	The Evasive Enemy: Insights into the Virulence and Epidemiology of the Emerging Attaching and Effacing Pathogen <i>Escherichia albertii</i> . Infection and Immunity, 2019, 87, .	1.0	25
6	Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain, 2018, 141, 422-458.	3.7	315
7	O1â€06â€02: CONCUSSION, MICROVASCULAR INJURY, AND EARLY TAUOPATHY IN YOUNG ATHLETES AFTER IMPACT HEAD INJURY AND AN IMPACT CONCUSSION MOUSE MODEL. Alzheimer's and Dementia, 2018, 14, P230.	0.4	0
8	[P3–127]: CONCUSSION, MICROVASCULAR INJURY, AND EARLY TAUOPATHY IN YOUNG ATHLETES AFTER IMPACT HEAD INJURY AND AN IMPACT CONCUSSION MOUSE MODE. Alzheimer's and Dementia, 2017, 13, P983.	0.4	0
9	P2â€055: Early Chronic Traumatic Encephalopathy in Young Athletes After Concussive Closedâ€Head Impact Injury and Mouse Model of Impact Concussion. Alzheimer's and Dementia, 2016, 12, P628.	0.4	0
10	Lambda Red-mediated Recombineering in the Attaching and Effacing Pathogen Escherichia albertii. Biological Procedures Online, 2016, 18, 3.	1.4	16
11	O1-07-02: Impact and blast neurotrauma mouse models of chronic traumatic encephalopathy validated by human neuropathology. , 2013, 9, P141-P141.		0
12	Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release. Neuropharmacology, 2013, 66, 31-39.	2.0	23
13	Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy. Brain, 2012, 135, 869-885.	3.7	57
14	Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model. Science Translational Medicine, 2012, 4, 134ra60.	5.8	684
15	GÎ2γ and the C Terminus of SNAP-25 Are Necessary for Long-Term Depression of Transmitter Release. PLoS ONE, 2011, 6, e20500.	1.1	36