
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1111571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent strategies to improve moisture stability in metal halide perovskites materials and devices. Journal of Energy Chemistry, 2022, 65, 219-235.	7.1	23
2	Detection of Hypertension-Induced Changes in Erythrocytes by SERS Nanosensors. Biosensors, 2022, 12, 32.	2.3	10
3	Ultrasensitive and multiplex SERS determination of anthropogenic phenols in oil fuel and environmental samples. Environmental Science: Nano, 2022, 9, 964-974.	2.2	4
4	Iodine Solution Treatment in Nonpolar Solvents as a Facile Approach to Improve the Morphology and Photostability of Perovskite Films. Journal of Physical Chemistry Letters, 2022, 13, 2695-2703.	2.1	2
5	Optical Properties and Photostability Improvement of CH ₃ NH ₃ PbI ₃ Treated by Iodide of Long H ₃ N(CH ₂) ₁₀ COOH Bifunctional Cation in "2D/3D―and "Monolaver―Passivation Modes. Chemistry of Materials. 2022. 34. 2998-3005.	3.2	2
6	Ternary Phase Diagrams of MAl–Pbl ₂ –DMF and MAl–Pbl ₂ –DMSO Systems. Journal of Physical Chemistry C, 2022, 126, 169-173.	1.5	6
7	Nonmonotonic Photostability of BA ₂ MA _{<i>n</i>–1} Pb _{<i>n</i>} I _{3<i>n</i>+1} Homologous Layered Perovskites. ACS Applied Materials & Interfaces, 2022, 14, 961-970.	4.0	13
8	Band Gap and Topology of 1D Perovskite-Derived Hybrid Lead Halide Structures. Crystals, 2022, 12, 657.	1.0	2
9	Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)–chitosan–modified SERS-active metallic nanostructured substrates for multiplex determination of dopamine, norepinephrine, and epinephrine. Mikrochimica Acta, 2022, 189, 211.	2.5	8
10	Solvate phases crystallizing from hybrid halide perovskite solutions: Chemical classification and structural relations. Mendeleev Communications, 2022, 32, 311-314.	0.6	7
11	Relative distance from the center of mass – A new structural descriptor linking the structure of organic cations with inorganic framework distortions in layered hybrid halide perovskites. Mendeleev Communications, 2022, 32, 315-316.	0.6	2
12	Optical properties and electronic structure of methylammonium iodocuprate as an X-ray scintillator. Mendeleev Communications, 2021, 31, 14-16.	0.6	2
13	WS2 nanotubes dressed in gold and silver: Synthesis, optoelectronic properties, and NO2 sensing. AIP Conference Proceedings, 2021, , .	0.3	0
14	FA ₂ PbBr ₄ : Synthesis, Structure, and Unusual Optical Properties of Two Polymorphs of Formamidinium-Based Layered (110) Hybrid Perovskite. Chemistry of Materials, 2021, 33, 1900-1907.	3.2	33
15	Dual-Purpose SERS Sensor for Selective Determination of Polycyclic Aromatic Compounds <i>via</i> Electron Donor–Acceptor Traps. ACS Sensors, 2021, 6, 1057-1066.	4.0	19
16	Layer Shift Factor in Layered Hybrid Perovskites: Univocal Quantitative Descriptor of Composition–Structure–Property Relationships. Chemistry of Materials, 2021, 33, 1213-1217.	3.2	24
17	Preparation, chemical features, structure and applications of membrane materials based on graphene oxide. Mendeleev Communications, 2021, 31, 137-148.	0.6	23
18	Solvent-free deposition of hybrid halide perovskites onto thin films of copper iodide p-type conductor. Mendeleev Communications, 2021, 31, 163-165.	0.6	7

#	Article	IF	CITATIONS
19	Iron oxide–silver patchy particles prepared by ultrasonic spray burning. Mendeleev Communications, 2021, 31, 309-311.	0.6	0
20	Crystal structure of new formamidinium triiodide jointly refined by single-crystal XRD, Raman scattering spectroscopy and DFT assessment of hydrogen-bond network features. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 692-695.	0.2	5
21	New Methylamine-Iodine-Mediated Solvent-Free Approach of Hybrid Perovskite Synthesis via the Redox Conversion of Metallic Lead Films. ACS Omega, 2021, 6, 20249-20253.	1.6	1
22	Relationships between Distortions of Inorganic Framework and Band Gap of Layered Hybrid Halide Perovskites. Chemistry of Materials, 2021, 33, 7518-7526.	3.2	22
23	Solubility of Hybrid Halide Perovskites in DMF and DMSO. Molecules, 2021, 26, 7541.	1.7	15
24	Structural Disorder in Layered Hybrid Halide Perovskites: Types of Stacking Faults, Influence on Optical Properties and Their Suppression by Crystallization Engineering. Nanomaterials, 2021, 11, 3333.	1.9	5
25	Universal Strategy of 3D and 2D Hybrid Perovskites Single Crystal Growth via In Situ Solvent Conversion. Chemistry of Materials, 2020, 32, 9805-9812.	3.2	18
26	Formamidinium Haloplumbate Intermediates: The Missing Link in a Chain of Hybrid Perovskites Crystallization. Chemistry of Materials, 2020, 32, 7739-7745.	3.2	35
27	Database of Two-Dimensional Hybrid Perovskite Materials: Open-Access Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning. Chemistry of Materials, 2020, 32, 7383-7388.	3.2	102
28	New Aspects of Copper Electrode Metamorphosis in Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 24601-24607.	1.5	9
29	Editorial: Celebrating the International Year of the Periodic Table: Beyond Mendeleev 150. Frontiers in Chemistry, 2020, 8, 610869.	1.8	0
30	Perovskite Puzzle for Revolutionary Functional Materials. Frontiers in Chemistry, 2020, 8, 550625.	1.8	5
31	Theoretical assessment of thermodynamic stability of 2D octane-1,8-diammonium lead halide perovskites. Mendeleev Communications, 2020, 30, 279-281.	0.6	14
32	From Metallic Lead Films to Perovskite Solar Cells through Lead Conversion with Polyhalide Solutions. ACS Applied Materials & amp; Interfaces, 2020, 12, 20456-20461.	4.0	12
33	New Features of Photochemical Decomposition of Hybrid Lead Halide Perovskites by Laser Irradiation. ACS Applied Materials & Interfaces, 2020, 12, 12755-12762.	4.0	21
34	Silver-chitosan nanocomposite as a plasmonic platform for SERS sensing of polyaromatic sulfur heterocycles in oil fuel. Nanotechnology, 2020, 31, 225503.	1.3	15
35	New Pigeonholing Approach for Selection of Solvents Relevant to Lead Halide Perovskite Processing. Journal of Physical Chemistry C, 2020, 124, 11117-11123.	1.5	30
36	New Acidic Precursor and Acetone-Based Solvent for Fast Perovskite Processing via Proton-Exchange Reaction with Methylamine. Molecules, 2020, 25, 1856.	1.7	4

#	Article	IF	CITATIONS
37	Measure is Treasure: Proper Iodine Vapor Treatment as a New Method of Morphology Improvement of Lead-Halide Perovskite Films. Chemistry of Materials, 2020, 32, 9140-9146.	3.2	8
38	Soft chemistry of pure silver as unique plasmonic metal of the Periodic Table of Elements. Pure and Applied Chemistry, 2020, 92, 1007-1028.	0.9	2
39	Periodic table of elements and nanotechnology. Mendeleev Communications, 2019, 29, 479-485.	0.6	15
40	Methylammonium Polyiodides: Remarkable Phase Diversity of the Simplest and Low-Melting Alkylammonium Polyiodide System. Journal of Physical Chemistry Letters, 2019, 10, 5776-5780.	2.1	19
41	Transferable Approach of Semi-Empirical Modeling of Disordered Mixed-Halide Hybrid Perovskites CH ₃ NH ₃ Pb(I _{1â€"<i>x</i>} Br <i>_x</i>) ₃ : Prediction of Thermodynamic Properties, Phase Stability, and Deviations from Vegard's Law. Journal of Physical Chemistry C. 2019, 123, 26036-26040.	1.5	12
42	Skeleton pseudomorphs of nanostructured silver for the surface-enhanced Raman spectroscopy. Mendeleev Communications, 2019, 29, 395-397.	0.6	2
43	Hierarchical structure of SERS substrates possessing the silver ring morphology. Mendeleev Communications, 2019, 29, 269-272.	0.6	1
44	Nanotechnology Facets of the Periodic Table of Elements. ACS Nano, 2019, 13, 10879-10886.	7.3	26
45	Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 7338-7346.	5.2	41
46	Probing lipids in biological membranes using SERS. Mendeleev Communications, 2019, 29, 635-637.	0.6	7
47	Synthesis of Plasmonic Photonic Crystal SiO2–Ag Nanostructures by Ion Beam Deposition of Silver Clusters onto Silica Microspheres. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1415-1418.	0.1	3
48	Patterned films of a hybrid lead halide perovskite grown using space-confined conversion of metallic lead by reactive polyiodide melts. RSC Advances, 2019, 9, 37079-37081.	1.7	10
49	Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics. Nature Nanotechnology, 2019, 14, 57-63.	15.6	75
50	Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods. Applied Nanoscience (Switzerland), 2019, 9, 1017-1024.	1.6	24
51	Promising methods for noninvasive medical diagnosis based on the use of nanoparticles: surface-enhanced raman spectroscopy in the study of cells, cell organelles and neurotransmitter metabolism markers. Bulletin of Russian State Medical University, 2019, , 57-67.	0.3	1
52	Hybridization of electronic states and magnetic properties of self-doped La 1â^' x MnO 3+δ (0â€`â‰ å €`â€` x â€ perovskites: XANES study. Journal of Magnetism and Magnetic Materials, 2018, 458, 134-136.	â‰ â €⁻0.1	.5) ₆
53	Interfacial self-assembly of nanostructured silver octahedra for surface-enhanced Raman spectroscopy. Functional Materials Letters, 2018, 11, 1850028.	0.7	3
54	Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 1780-1786.	5.2	132

#	Article	IF	CITATIONS
55	Nanocomposites based on tubular and onion nanostructures of molybdenum and tungsten disulfides: inorganic design, functional properties and applications. Russian Chemical Reviews, 2018, 87, 251-271.	2.5	15
56	Synthesis and crystal structure of a new hybrid methylammonium iodocuprate. Mendeleev Communications, 2018, 28, 245-247.	0.6	10
57	Isolation of methylammonium room temperature reactive polyiodide melt into a new starch complex. Mendeleev Communications, 2018, 28, 242-244.	0.6	3
58	Template synthesis of methylammonium lead iodide in the matrix of anodic titanium dioxide via the direct conversion of electrodeposited elemental lead. Mendeleev Communications, 2018, 28, 487-489.	0.6	19
59	Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells. Mendeleev Communications, 2018, 28, 378-380.	0.6	9
60	Development of Modern Fundamental Materials Science at the Faculty of Materials Science of the Moscow State University. Inorganic Materials, 2018, 54, 1330-1362.	0.2	0
61	Gold Decoration and Photoresistive Response to Nitrogen Dioxide of WS ₂ Nanotubes. Chemistry - A European Journal, 2018, 24, 18952-18962.	1.7	27
62	Multifunctional Composites Based on Graphite Oxide, Doxorubicin, and Magnetic Nanoparticles for Targeted Drug Delivery. Nanotechnologies in Russia, 2018, 13, 152-160.	0.7	5
63	New hierarchical titania-based structures for photocatalysis. Mendeleev Communications, 2018, 28, 541-542.	0.6	10
64	Phenomenological description of doped manganites. Electron bandwidth, crystal local structure and Curie temperature. Ceramics International, 2018, 44, 22297-22300.	2.3	8
65	Strong light–matter interaction in tungsten disulfide nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 20812-20820.	1.3	44
66	Solution Processing of Methylammonium Lead Iodide Perovskite from Î ³ -Butyrolactone: Crystallization Mediated by Solvation Equilibrium. Chemistry of Materials, 2018, 30, 5237-5244.	3.2	100
67	One-Step Microheterogeneous Formation of Rutile@Anatase Core–Shell Nanostructured Microspheres Discovered by Precise Phase Mapping. Journal of Physical Chemistry C, 2017, 121, 4443-4450.	1.5	9
68	Novel Multilayer Nanostructured Materials for Recognition of Polycyclic Aromatic Sulfur Pollutants and Express Analysis of Fuel Quality and Environmental Health by Surface Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 15058-15067.	4.0	24
69	A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts. Materials Horizons, 2017, 4, 625-632.	6.4	57
70	New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chemistry of Materials, 2017, 29, 587-594.	3.2	68
71	Electron structure, Raman "vacancy―modes and Griffiths-like phase of self-doped Pr1-MnO3+δ manganites. Journal of Alloys and Compounds, 2017, 722, 77-82.	2.8	12
72	Non-classical growth of water-redispersible spheroidal gold nanoparticles assisted by leonardite humate. CrystEngComm, 2017, 19, 876-886.	1.3	11

#	Article	IF	CITATIONS
73	Formamidinium iodide: crystal structure and phase transitions. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 569-572.	0.2	35
74	Crystal Structure of DMF-Intermediate Phases Uncovers the Link Between CH ₃ NH ₃ PbI ₃ Morphology and Precursor Stoichiometry. Journal of Physical Chemistry C, 2017, 121, 20739-20743.	1.5	126
75	Influence of size and surface on magnetism of magnetite and maghemite nanoparticles. International Journal of Nanotechnology, 2017, 14, 654.	0.1	0
76	Self-assembled nanoparticle patterns on carbon nanowall surfaces. Physical Chemistry Chemical Physics, 2016, 18, 12344-12349.	1.3	14
77	Nanostructured silver materials for noninvasive medical diagnostics by surface-enhanced Raman spectroscopy. Mendeleev Communications, 2016, 26, 177-186.	0.6	23
78	One-pot preparation of SERS nanocomposites of silver and graphene oxide with tunable properties. Mendeleev Communications, 2016, 26, 231-234.	0.6	8
79	The Effect of Spin-Peierls Instability Suppression in Nanometer-Scale-Sized CuGeO3 Crystals. Applied Magnetic Resonance, 2016, 47, 881-893.	0.6	3
80	Plasmonic properties of aged silver hydrosols. Mendeleev Communications, 2016, 26, 32-34.	0.6	6
81	A new route for SERS analysis of intact erythrocytes using polydisperse silver nanoplatelets on biocompatible scaffolds. RSC Advances, 2016, 6, 85156-85164.	1.7	11
82	Surface enhanced Raman spectroscopy substrates with advanced spectral sensitivity prepared from five years old silver nanoplatelets. Functional Materials Letters, 2016, 09, 1642003.	0.7	3
83	Inkjet printing of silver rainbow colloids for SERS chips with polychromatic sensitivity. RSC Advances, 2016, 6, 15535-15540.	1.7	11
84	Chimie douce preparation of reproducible silver coatings for SERS applications. Functional Materials Letters, 2016, 09, 1650016.	0.7	11
85	Hierarchic nanostructuring by self–reduction of silver (I) oxide complexes. Functional Materials Letters, 2016, 09, 1650014.	0.7	6
86	Spray Solution Combustion Synthesis of Metallic Hollow Microspheres. Journal of Physical Chemistry C, 2016, 120, 7165-7171.	1.5	30
87	New nanocomposites for SERS studies of living cells and mitochondria. Journal of Materials Chemistry B, 2016, 4, 539-546.	2.9	30
88	Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy. Scientific Reports, 2015, 5, 13793.	1.6	87
89	Polymer-coated substrates for surface enhanced Raman spectroscopy. Mendeleev Communications, 2015, 25, 460-462.	0.6	13
90	Effects of cathode and electrolyte properties on lithium–air battery performance: Computational study. Journal of Power Sources, 2015, 279, 707-712.	4.0	22

#	Article	IF	CITATIONS
91	Shedding Light on Aging of N-Doped Titania Photocatalysts. Journal of Physical Chemistry C, 2015, 119, 18663-18670.	1.5	19
92	Reduced graphite oxide decorated with gold nanoparticles for Raman scattering spectroscopy. Nanotechnologies in Russia, 2015, 10, 370-379.	0.7	0
93	Immobilization of nanostructured metal silver at the surface of anodic titanium dioxide for the creation of composites with the surface plasmon resonance. Nanotechnologies in Russia, 2015, 10, 345-352.	0.7	4
94	Investigation of kinetics of the process of formation of gold and silver nanoparticles and composites based on them. Nanotechnologies in Russia, 2015, 10, 713-726.	0.7	1
95	Microbead silica decorated with polyhedral silver nanoparticles as a versatile component of sacrificial gel films for SERS applications. RSC Advances, 2015, 5, 90335-90342.	1.7	9
96	Raman spectroscopy and silver nanoparticles in biomedical studies of hemoglobin. Moscow University Chemistry Bulletin, 2015, 70, 130-134.	0.2	0
97	Synthesis of perovskite sodium neodymium titanates and study of their photocatalytic properties. Doklady Chemistry, 2014, 454, 9-12.	0.2	5
98	Ultrasonic-silver-rain preparation of SERS substrates. Materials Letters, 2014, 121, 66-69.	1.3	23
99	Aqueous Diaminsilver Hydroxide as a Precursor of Pure Silver Nanoparticles for SERS Probing of Living Erythrocytes. Plasmonics, 2014, 9, 227-235.	1.8	24
100	Decoration of WS ₂ Nanotubes and Fullerene-Like MoS ₂ with Gold Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 2161-2169.	1.5	57
101	Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of Thermally Assisted Reactions in Aqueous Sprays. Journal of Materials Chemistry A, 2014, 2, 3102.	5.2	24
102	Magnetic properties of maghemite nanoparticles. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 1075-1080.	0.1	14
103	Hydrothermal synthesis of sodium and potassium titanates and their photocatalytic properties in water and methanol/water splitting. Doklady Chemistry, 2014, 455, 58-61.	0.2	7
104	Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties. Journal of Soils and Sediments, 2014, 14, 261-268.	1.5	27
105	The science Olympiad "Nanotechnology: Breakthrough into the Future― Russian Journal of General Chemistry, 2013, 83, 1282-1289.	0.3	1
106	Reactivity of Carbon in Lithium–Oxygen Battery Positive Electrodes. Nano Letters, 2013, 13, 4697-4701.	4.5	262
107	Unusual silver nanostructures prepared by aerosol spray pyrolysis. CrystEngComm, 2013, 15, 7863.	1.3	21
108	Tuning SERS for living erythrocytes: Focus on nanoparticle size and plasmon resonance position. Journal of Raman Spectroscopy, 2013, 44, 686-694.	1.2	36

#	Article	IF	CITATIONS
109	Mössbauer spectroscopy of frozen solutions as a stepwise control tool in preparation of biocompatible humic-stabilized feroxyhyte nanoparticles. Hyperfine Interactions, 2013, 219, 113-120.	0.2	8
110	Hydrolytic Stages of Titania Nanoparticles Formation Jointly Studied by SAXS, DLS, and TEM. Journal of Physical Chemistry C, 2013, 117, 12800-12805.	1.5	15
111	Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O ₂ cells. Beilstein Journal of Nanotechnology, 2013, 4, 758-762.	1.5	34
112	Chemical Tuning of Adsorption Properties of Titanate Nanotubes. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	8
113	Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor. Class Physics and Chemistry, 2012, 38, 504-510.	0.2	4
114	Unconventional vapor–liquid–solid mechanism of ultra-long Ba6Mn24O48 whiskers growth from chloride fluxes. CrystEngComm, 2012, 14, 3778.	1.3	3
115	Constrained growth of anisotropic magnetic δ-FeOOH nanoparticles in the presence of humic substances. CrystEngComm, 2012, 14, 8097.	1.3	28
116	Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips. Journal of Materials Chemistry, 2012, 22, 24530.	6.7	65
117	Growth of thin vanadia nanobelts with improved lithium storage capacity in hydrothermally aged vanadia gels. CrystEngComm, 2012, 14, 1561-1567.	1.3	15
118	Carbon nanowalls decorated with silicon for lithium-ion batteries. Carbon, 2012, 50, 1438-1442.	5.4	56
119	Fabrication of microporous cathode materials containing polyaniline–vanadia self-scrolled nanoribbons. Electrochimica Acta, 2012, 63, 329-334.	2.6	8
120	An inorganic puzzle. Materials Today, 2012, 15, 175.	8.3	2
121	Nanorods of cryptomelane via soft chemistry method and their catalytic activity. Solid State Sciences, 2012, 14, 988-995.	1.5	12
122	Modification of quantum dots with nucleic acids. Russian Chemical Reviews, 2011, 80, 1209-1221.	2.5	9
123	Application of silver nanoparticles prepared by "green―chemistry approach to diagnostics of biological objects by surface enhanced Raman spectroscopy. Doklady Chemistry, 2011, 440, 302-306.	0.2	3
124	Direct preparation of anion-free pure silver hydrosols. Mendeleev Communications, 2011, 21, 312-314.	0.6	8
125	Magnetic Resonance Imaging of Endothelial Cells with Vectorized Iron Oxide Nanoparticles. Bulletin of Experimental Biology and Medicine, 2011, 151, 726-730.	0.3	1
126	Silica microsphere decoration with silver nanoparticles by an impregnation and reduction technique. Mendeleev Communications, 2011, 21, 77-79.	0.6	2

#	Article	IF	CITATIONS
127	Protected anodes for lithium-air batteries. Solid State Ionics, 2011, 184, 62-64.	1.3	52
128	The local structure of TiO2-based nanotubes intercalated with iron (III). Nanotechnologies in Russia, 2010, 5, 223-226.	0.7	2
129	Chemically modified Ba6Mn24O48 tunnel manganite as a lithium insertion host. Solid State Ionics, 2010, 181, 1002-1008.	1.3	5
130	Titania nanotubes, nanorods and nanopowder in the carbon monoxide oxidation process. Solid State Sciences, 2010, 12, 1024-1028.	1.5	12
131	Synthesis, Structure, and Sensor Properties of Vanadium Pentoxide Nanorods. European Journal of Inorganic Chemistry, 2010, 2010, 5247-5253.	1.0	42
132	Impedance spectroscopy study of lithium ion diffusion in a new cathode material based on vanadium pentoxide. Mendeleev Communications, 2010, 20, 12-14.	0.6	11
133	Hydrothermal synthesis of a novel phase of vanadia-based nanowhiskers. Mendeleev Communications, 2010, 20, 153-155.	0.6	2
134	LixV2O5 nanobelts for high capacity lithium-ion battery cathodes. Electrochemistry Communications, 2010, 12, 1154-1157.	2.3	44
135	New environmental nontoxic agents for the preparation of core-shell magnetic nanoparticles. Mendeleev Communications, 2009, 19, 72-74.	0.6	12
136	Synthesis, chemical modification and electrochemical behaviour of layered sodium manganese dioxide. Mendeleev Communications, 2009, 19, 187-189.	0.6	8
137	Soluble microcapsules for non-toxic magnetic fluids. Mendeleev Communications, 2009, 19, 4-6.	0.6	4
138	Titania nanotubes supported platinum catalyst in CO oxidation process. Applied Catalysis A: General, 2009, 362, 20-25.	2.2	42
139	Magnetic phase transitions in nanostructures with different cluster orderings. Nanotechnologies in Russia, 2009, 4, 467-474.	0.7	11
140	Lessons from the foreign nanohype. Herald of the Russian Academy of Sciences, 2009, 79, 1-6.	0.2	3
141	Key trends in basic and application-oriented research on nanomaterials. Russian Chemical Reviews, 2009, 78, 801-820.	2.5	52
142	Physicochemical and functional peculiarities of metal oxide whiskers. Russian Chemical Bulletin, 2008, 57, 1042-1053.	0.4	0
143	Chemical and morphological modification of complex manganese oxides with different sizes of structural tunnels. Russian Chemical Bulletin, 2008, 57, 1151-1156.	0.4	1
144	Sensor properties of vanadium oxide nanotubes. Mendeleev Communications, 2008, 18, 6-7.	0.6	27

#	Article	IF	CITATIONS
145	Surfactants in the formation of vanadium oxide nanotubes. Mendeleev Communications, 2008, 18, 71-72.	0.6	20
146	Flexible cathode materials based on V2O5 xerogels reinforced with electroactive Ba6Mn24O48 whiskers. Mendeleev Communications, 2007, 17, 255-257.	0.6	2
147	Insertion of lithium into the crystal structure of Ba6Mn24O48 whiskers. Doklady Chemistry, 2007, 414, 140-144.	0.2	2
148	Synthesis, structure, and properties of vanadium pentoxide nanotubes. Glass Physics and Chemistry, 2007, 33, 232-236.	0.2	6
149	Chemical and morphological modifications of filamentary crystals of the Ba6Mn24O48 manganite with a tunnel structure. Glass Physics and Chemistry, 2007, 33, 350-355.	0.2	1
150	Nanostructured Ba6Mn24O48 whiskers. Mendeleev Communications, 2007, 17, 16-17.	0.6	5
151	Application of Nanostructured ASP Precursors for Processing CaCuMn6O12 Colossal Magnetoresistance Ceramics. International Journal of Applied Ceramic Technology, 2006, 3, 259-265.	1.1	6
152	Morphological features and ion-exchange properties of the H-form of todorokite. Doklady Chemistry, 2006, 409, 101-105.	0.2	0
153	Microemulsion synthesis of mesoporous γ-Fe2O3 nanoparticles. Doklady Chemistry, 2006, 410, 174-177.	0.2	8
154	Synthesis of the protonated form of filamentary crystals of manganite Ba6Mn24O48 with a tunnel structure. Doklady Chemistry, 2006, 411, 197-201.	0.2	2
155	Magnetic and transport properties of double distorted perovskites CaCuMn6O12 and CaCu2Mn5O12. Journal of Magnetism and Magnetic Materials, 2006, 300, e134-e136.	1.0	3
156	Magnetoresistive â€~necked-grain' CaCuMn6O12 ceramics prepared by ultrasonic aerosol spray pyrolysis. Mendeleev Communications, 2005, 15, 131-133.	0.6	4
157	Preparation and properties of electrochromic coatings based on nanoparticle tungsten oxide. Mendeleev Communications, 2005, 15, 178-180.	0.6	10
158	Magnetoresistive "Necked-Grain―CaCuMn6O12 Ceramics Prepared by Ultrasonic Aerosol Spray Pyrolysis ChemInform, 2005, 36, no.	0.1	0
159	Structural and microstructural features of functional materials based on cuprates and manganites. Russian Chemical Reviews, 2004, 73, 881-898.	2.5	10
160	Modern preparation methods of oriented thick films of superconducting cuprates. Crystallography Reports, 2004, 49, 233-239.	0.1	2
161	Crystallization of amino acids on substrates with superficial chiral reliefs. Mendeleev Communications, 2004, 14, 150-152.	0.6	0
162	Processing-dependent CMR properties of Ca(Cu,Mn)7O12 manganites. Mendeleev Communications, 2004, 14, 153-155.	0.6	6

#	Article	IF	CITATIONS
163	Thermal instability of a cation-disordered NdBa2Cu3O7 superconductor. Mendeleev Communications, 2004, 14, 161-163.	0.6	3
164	Processing-Dependent CMR Properties of Ca(Cu,Mn)7O12 Manganites ChemInform, 2004, 35, no.	0.1	0
165	Fundamental chemical features of complex manganites and cuprates for advanced functional materials engineering. Pure and Applied Chemistry, 2004, 76, 1749-1768.	0.9	7
166	Synthesis and Properties of the CaCu x Mn7 – x O12 Solid Solution with Colossal Magnetoresistance. Doklady Chemistry, 2003, 388, 33-37.	0.2	6
167	Chemical design of metal-oxide superconductors. Physica B: Condensed Matter, 2002, 321, 249-256.	1.3	15
168	Texture formation in melt-solidified YBa2Cu3Oz thick films by artificial surface reliefs. Journal of Crystal Growth, 2002, 241, 512-534.	0.7	13
169	Specific Features of Phase Relationships in the Pr–Ba–Cu–O System. Doklady Chemistry, 2002, 382, 12-15.	. 0.2	1
170	Evolution of the Superconducting NdBa2Cu3O z Phase upon Isothermal Annealing. Doklady Chemistry, 2002, 383, 105-109.	0.2	3
171	Specific Features of the Oxygen Nonstoichiometry and Structure of Pr1 + x Ba2 – x Cu3O z. Doklady Chemistry, 2002, 385, 199-202.	0.2	1
172	Local Structures of Framework Manganites Ba6Mn24O48 and CaMn7O12. Doklady Chemistry, 2002, 387, 311-315.	0.2	1
173	Title is missing!. Doklady Chemistry, 2002, 387, 316-321.	0.2	3
174	Dynamics of Cation Ordering in the Superconducting NdBa2Cu3O7 Phase. Doklady Chemistry, 2002, 387, 323-327.	0.2	3
175	Fast synthesis of YBa2Cu3Oz superconductor at low temperatures of its orthorhombic modification existence using mechanically activated and densified two-powder precursors. Physica C: Superconductivity and Its Applications, 2001, 349, 278-288.	0.6	5
176	Formation of Nd _{1+<i>x</i>} (Ba _{1â^'<i>y</i>} Sr _{<i>y</i>}) _{2â^'<i>x</i>} Cu ₃ O _{7±Î} solid solutions by crystal pulling. Journal of Materials Research, 2001, 16, 529-533.	1.2	3
177	Chapter 189 Single-crystal growth for science and technology. Fundamental Theories of Physics, 2000, 30, 67-227.	0.1	8
178	Possibility of Nd/sub 1.9/Ba/sub 1.1/Cu/sub 3/O/sub 7+Î′l and Pr/sub 1.14/Ba/sub 1.86/Cu/sub 3/O/sub 7-Î′l single crystals for insulator in high-speed superconducting circuits. IEEE Transactions on Applied Superconductivity, 2000, 10, 1662-1666.	1.1	1
179	Chemical principles of preparation of metal-oxide superconductors. Russian Chemical Reviews, 2000, 69, 1-34.	2.5	51
180	Twins and related morphology of as-grown neodymium-rich Nd1+xBa2â^'xCu3Oz crystals. Physica C: Superconductivity and Its Applications, 1998, 299, 279-300.	0.6	27

#	Article	IF	CITATIONS
181	Oxygen nonstoichiometry and phase transitions of the neodymium-rich Nd1+xBa2â^'xCu3Oz solid solution. Physica C: Superconductivity and Its Applications, 1998, 300, 250-269.	0.6	56
182	Crystal growth of the neodymium-rich Nd1+xBa2-xCu3Oz solid solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 53, 54-61.	1.7	4
183	Crystal growth and superconductivity of Y1â^'xNdxBa2Cu3O7â^'δ solid solutions. Applied Superconductivity, 1998, 6, 175-183.	0.5	11
184	Phonon Raman study of theNdBa2Cu3Oyâ^'Nd2Ba1Cu3Oysystem. Physical Review B, 1998, 58, 12368-12376.	1.1	11
185	Construction of the Quasiâ€ternary Phase Diagram in the NdO _{1.5} â€BaOâ€CuOx System in an Air Atmosphere: Part I, Equilibrium Tie Lines in the Nd _{1+x} Ba _{2â^'<i>x</i>} Cu ₃ O _{6+δ} Solid Solution and Liquid Region, Journal of the American Ceramic Society. 1998. 81. 2116-2124.	1.9	59
186	Mixing Y(RE)BCO (RE=Nd, Sm) superconductors by crystal pulling method. Applied Superconductivity, 1997, 5, 11-19.	0.5	3
187	Construction of a quasi-ternary phase diagram in the NdO1.5î—,BaOî—,CuO system in the air atmosphere Part II. Phase equilibria of the neodymium-rich Nd1+xBa2â^'xCu3Oz solid solution. Physica C: Superconductivity and Its Applications, 1997, 289, 251-264.	0.6	39
188	Solubility of neodymium in copper-rich oxide melts in air and growth of Nd1 + xBa2 â^' xCu3Oz solid solution single crystals. Physica C: Superconductivity and Its Applications, 1997, 289, 37-50.	0.6	27
189	Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics. , 0, , .		1
190	Polyiodide-assisted fabrication of hybrid perovskite thin films from lead nanolayers on flexible substrates. Japanese Journal of Applied Physics, 0, , .	0.8	0
191	Structural disorder and stability issues – two heels of Achilles of layered hybrid halide perovskites. , 0, , .		0