Justin A Boddey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1111403/publications.pdf

Version: 2024-02-01

236912 254170 2,927 43 25 43 citations h-index g-index papers 47 47 47 2935 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity. Bioorganic Chemistry, 2021, 117, 105359.	4.1	8
2	Epitope-coated polymer particles elicit neutralising antibodies against Plasmodium falciparum sporozoites. Npj Vaccines, 2021, 6, 141.	6.0	6
3	Repeated <i>Plasmodium falciparum </i> infection in humans drives the clonal expansion of an adaptive $\hat{I}^3\hat{I}$ T cell repertoire. Science Translational Medicine, 2021, 13, eabe 7430.	12.4	16
4	Organoids for Liver Stage Malaria Research. Trends in Parasitology, 2020, 36, 158-169.	3.3	11
5	Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle. Cell Host and Microbe, 2020, 27, 642-658.e12.	11.0	94
6	Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Reports, 2020, 30, 4343-4354.e4.	6.4	24
7	Malaria surveillance from both ends: concurrent detection of Plasmodium falciparum in saliva and excreta harvested from Anopheles mosquitoes. Parasites and Vectors, 2019, 12, 355.	2.5	15
8	Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Reports, 2019, 29, 3796-3806.e4.	6.4	25
9	Implications of <i>Plasmodium</i> glycosylation on vaccine efficacy and design. Future Microbiology, 2018, 13, 609-612.	2.0	22
10	Evidence that the Plasmodium falciparum Protein Sortilin Potentially Acts as an Escorter for the Trafficking of the Rhoptry-Associated Membrane Antigen to the Rhoptries. MSphere, 2018, 3, .	2.9	18
11	Aspartyl Protease 5 Matures Dense Granule Proteins That Reside at the Host-Parasite Interface in Toxoplasma gondii. MBio, 2018, 9, .	4.1	46
12	Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P 2 position of PEXEL peptidomimetics. European Journal of Medicinal Chemistry, 2018, 154, 182-198.	5.5	26
13	Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nature Microbiology, 2018, 3, 1010-1022.	13.3	59
14	<i>Plasmodium falciparum</i> subtilisinâ€like ookinete protein SOPT plays an important and conserved role during ookinete infection of the <i>Anopheles stephensi</i> midgut. Molecular Microbiology, 2018, 109, 458-473.	2.5	8
15	AMA1 and MAEBL are important for <i>Plasmodium falciparum</i> sporozoite infection of the liver. Cellular Microbiology, 2017, 19, e12745.	2.1	60
16	Cell Traversal Activity Is Important for Plasmodium falciparum Liver Infection in Humanized Mice. Cell Reports, 2017, 18, 3105-3116.	6.4	91
17	Plasmepsins on the antimalarial hit list. Science, 2017, 358, 445-446.	12.6	11
18	Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts. Nature Communications, 2017, 8, 561.	12.8	63

#	Article	IF	Citations
19	Molecular mechanisms of host cell traversal by malaria sporozoites. International Journal for Parasitology, 2017, 47, 129-136.	3.1	17
20	Exploration of the P 3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V. Bioorganic and Medicinal Chemistry, 2016, 24, 1993-2010.	3.0	14
21	Role of the ER and Golgi in protein export by Apicomplexa. Current Opinion in Cell Biology, 2016, 41, 18-24.	5.4	25
22	Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nature Communications, 2016, 7, 10470.	12.8	65
23	Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nature Structural and Molecular Biology, 2015, 22, 590-596.	8.2	93
24	<i>Burkholderia pseudomallei</i> sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Research, 2015, 25, 129-141.	5.5	61
25	The effect of N-methylation on transition state mimetic inhibitors of the <i>Plasmodium</i> protease, plasmepsin V. MedChemComm, 2015, 6, 437-443.	3.4	16
26	An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell. ELife, 2015, 4, .	6.0	99
27	Inhibition of Plasmepsin V Activity Demonstrates Its Essential Role in Protein Export, PfEMP1 Display, and Survival of Malaria Parasites. PLoS Biology, 2014, 12, e1001897.	5.6	121
28	The Acute Transcriptomic and Proteomic Response of HC-04 Hepatoma Cells to Hepatocyte Growth Factor and its Implications for Plasmodium falciparum Sporozoite Invasion. Molecular and Cellular Proteomics, 2014, 13, 1153-1164.	3.8	21
29	Transition State Mimetics of the <i>Plasmodium</i> Export Element Are Potent Inhibitors of Plasmepsin V from <ip. falciparum<="" i=""> and <ip. i="" vivax<=""> Journal of Medicinal Chemistry, 2014, 57, 7644-7662.</ip.></ip.>	6.4	46
30	<i>Plasmodium</i> Nesting: Remaking the Erythrocyte from the Inside Out. Annual Review of Microbiology, 2013, 67, 243-269.	7.3	99
31	Role of Plasmepsin V in Export of Diverse Protein Families from the <i>Plasmodium falciparum</i> Exportome. Traffic, 2013, 14, 532-550.	2.7	127
32	Avirulence Protein 3a (AVR3a) from the Potato Pathogen Phytophthora infestans Forms Homodimers through Its Predicted Translocation Region and Does Not Specifically Bind Phospholipids. Journal of Biological Chemistry, 2012, 287, 38101-38109.	3.4	28
33	An aspartyl protease directs malaria effector proteins to the host cell. Nature, 2010, 463, 627-631.	27.8	289
34	A Genomic Survey of Positive Selection in Burkholderia pseudomallei Provides Insights into the Evolution of Accidental Virulence. PLoS Pathogens, 2010, 6, e1000845.	4.7	116
35	That Was Then But This Is Now: Malaria Research in the Time of an Eradication Agenda. Science, 2010, 328, 862-866.	12.6	209
36	A common protein export pathway in malaria parasites. Malaria Journal, 2010, 9, .	2.3	1

#	Article	IF	CITATION
37	Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum. PLoS Pathogens, 2009, 5, e1000328.	4.7	70
38	A newly discovered protein export machine in malaria parasites. Nature, 2009, 459, 945-949.	27.8	437
39	Role of the <i>Plasmodium </i> Export Element in Trafficking Parasite Proteins to the Infected Erythrocyte. Traffic, 2009, 10, 285-299.	2.7	164
40	The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Cellular Microbiology, 2007, 9, 514-531.	2.1	40
41	Temperature-Regulated Microcolony Formation by Burkholderia pseudomallei Requires pilA and Enhances Association with Cultured Human Cells. Infection and Immunity, 2006, 74, 5374-5381.	2.2	36
42	A Type IV Pilin, PilA, Contributes to Adherence of Burkholderia pseudomallei and Virulence In Vivo. Infection and Immunity, 2005, 73, 1260-1264.	2.2	92
43	Adherence of Burkholderia pseudomallei Cells to Cultured Human Epithelial Cell Lines Is Regulated by Growth Temperature. Infection and Immunity, 2002, 70, 974-980.	2.2	33