
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1111359/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Liver is a primary source of insulin-like growth factor-1 in skin wound healing. Journal of<br>Endocrinology, 2022, 252, 59-70.                                                                                          | 1.2 | 9         |
| 2  | Growth Hormone and Insulin-Like Growth Factor 1 Regulation of Nonalcoholic Fatty Liver Disease.<br>Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1812-1824.                                               | 1.8 | 32        |
| 3  | Constitutively Active STAT5b Feminizes Mouse Liver Gene Expression. Endocrinology, 2022, 163, .                                                                                                                          | 1.4 | 13        |
| 4  | GH directly inhibits steatosis and liver injury in a sex-dependent and IGF1-independent manner. Journal of Endocrinology, 2021, 248, 31-44.                                                                              | 1.2 | 19        |
| 5  | Parameter-Dependency of Low-Intensity Vibration for Wound Healing in Diabetic Mice. Frontiers in Bioengineering and Biotechnology, 2021, 9, 654920.                                                                      | 2.0 | 9         |
| 6  | Sexual dimorphic impact of adultâ€onset somatopause on life span and ageâ€induced osteoarthritis. Aging<br>Cell, 2021, 20, e13427.                                                                                       | 3.0 | 8         |
| 7  | Rosiglitazone Requires Hepatocyte PPARÎ <sup>3</sup> Expression to Promote Steatosis in Male Mice With<br>Diet-Induced Obesity. Endocrinology, 2021, 162, .                                                              | 1.4 | 16        |
| 8  | Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling<br>Hepatocyte Carbohydrate and Lipid Metabolism. Cells, 2021, 10, 2532.                                                           | 1.8 | 21        |
| 9  | Statins Directly Regulate Pituitary Cell Function and Exert Antitumor Effects in Pituitary Tumors.<br>Neuroendocrinology, 2020, 110, 1028-1041.                                                                          | 1.2 | 12        |
| 10 | Imaging and Manipulating Pituitary Function in the Awake Mouse. Endocrinology, 2019, 160, 2271-2281.                                                                                                                     | 1.4 | 11        |
| 11 | Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver<br>Disease. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3389-3402.                                 | 1.8 | 52        |
| 12 | Tissue-dependent effects of cis-9,trans-11- and trans-10,cis-12-CLA isomers on glucose and lipid metabolism in adult male mice. Journal of Nutritional Biochemistry, 2019, 67, 90-100.                                   | 1.9 | 11        |
| 13 | Neuronostatin exerts actions on pituitary that are unique from its sibling peptide somatostatin.<br>Journal of Endocrinology, 2018, 237, 217-227.                                                                        | 1.2 | 11        |
| 14 | Adult-Onset Hepatocyte GH Resistance Promotes NASH in Male Mice, Without Severe Systemic<br>Metabolic Dysfunction. Endocrinology, 2018, 159, 3761-3774.                                                                  | 1.4 | 17        |
| 15 | The Pituitary Gland is a Novel Major Site of Action of Metformin in Non-Human Primates: a Potential<br>Path to Expand and Integrate Its Metabolic Actions. Cellular Physiology and Biochemistry, 2018, 49,<br>1444-1459. | 1.1 | 11        |
| 16 | 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. Journal of Molecular Endocrinology, 2018, 61, T187-T198.                                     | 1.1 | 72        |
| 17 | BIM-23A760 influences key functional endpoints in pituitary adenomas and normal pituitaries:<br>molecular mechanisms underlying the differential response in adenomas. Scientific Reports, 2017, 7,<br>42002.            | 1.6 | 27        |
| 18 | Adipokines (Leptin, Adiponectin, Resistin) Differentially Regulate All Hormonal Cell Types in Primary<br>Anterior Pituitary Cell Cultures from Two Primate Species. Scientific Reports, 2017, 7, 43537.                  | 1.6 | 41        |

| #  | Article                                                                                                                                                                                                                                      | IF               | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 19 | Hepatocyte-specific, PPARÎ <sup>3</sup> -regulated mechanisms to promote steatosis in adult mice. Journal of<br>Endocrinology, 2017, 232, 107-121.                                                                                           | 1.2              | 66           |
| 20 | Somatotroph-Specific Aip-Deficient Mice Display Pretumorigenic Alterations in Cell-Cycle Signaling.<br>Journal of the Endocrine Society, 2017, 1, 78-95.                                                                                     | 0.1              | 12           |
| 21 | Growth Hormone Control of Hepatic Lipid Metabolism. Diabetes, 2016, 65, 3598-3609.                                                                                                                                                           | 0.3              | 90           |
| 22 | Hepatic PPARÎ <sup>3</sup> Is Not Essential for the Rapid Development of Steatosis After Loss of Hepatic GH<br>Signaling, in Adult Male Mice. Endocrinology, 2016, 157, 1728-1735.                                                           | 1.4              | 18           |
| 23 | Islet insulin content and release are increased in male mice with elevated endogenous GH and IGF-I,<br>without evidence of systemic insulin resistance or alterations in β-cell mass. Growth Hormone and IGF<br>Research, 2015, 25, 189-195. | 0.5              | 10           |
| 24 | Melatonin Regulates Somatotrope and Lactotrope Function Through Common and Distinct Signaling<br>Pathways in Cultured Primary Pituitary Cells From Female Primates. Endocrinology, 2015, 156, 1100-1110.                                     | 1.4              | 16           |
| 25 | Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation,) Tj ETQq1 1 0.784                                                                                                                               | 1314 rgBT<br>3.2 | /Oyerlock 10 |
| 26 | Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice. Diabetes, 2015, 64, 3093-3103.                                                                                                                                            | 0.3              | 85           |
| 27 | Long- But Not Short-Term Adult-Onset, Isolated GH Deficiency in Male Mice Leads to Deterioration of<br>β-Cell Function, Which Cannot Be Accounted for by Changes in β-Cell Mass. Endocrinology, 2014, 155,<br>726-735.                       | 1.4              | 24           |
| 28 | Differential impact of selective GH deficiency and endogenous GH excess on insulin-mediated actions<br>in muscle and liver of male mice. American Journal of Physiology - Endocrinology and Metabolism,<br>2014, 307, E928-E934.             | 1.8              | 23           |
| 29 | Obestatin Plays an Opposite Role in the Regulation of Pituitary Somatotrope and Corticotrope Function in Female Primates and Male/Female Mice. Endocrinology, 2014, 155, 1407-1417.                                                          | 1.4              | 15           |
| 30 | Both Estrogen Receptor α and β Stimulate Pituitary GH Gene Expression. Molecular Endocrinology, 2014,<br>28, 40-52.                                                                                                                          | 3.7              | 58           |
| 31 | Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice. Carcinogenesis, 2014, 35, 2467-2473.                                                                                                                       | 1.3              | 12           |
| 32 | Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. Journal of Molecular Endocrinology, 2013, 50, 19-29.                                                             | 1.1              | 11           |
| 33 | Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?. Journal of Endocrinology, 2013, 216, 363-374.                                                                                                       | 1.2              | 48           |
| 34 | The Rise in Growth Hormone during Starvation Does Not Serve to Maintain Glucose Levels or Lean<br>Mass but Is Required for Appropriate Adipose Tissue Response in Female Mice. Endocrinology, 2013, 154,<br>263-269.                         | 1.4              | 32           |
| 35 | Endogenous Somatostatin Is Critical in Regulating the Acute Effects of l-Arginine on Growth<br>Hormone and Insulin Release in Mice. Endocrinology, 2013, 154, 2393-2398.                                                                     | 1.4              | 7            |
| 36 | Insulin and IGF-I Inhibit GH Synthesis and Release in Vitro and in Vivo by Separate Mechanisms.<br>Endocrinology, 2013, 154, 2410-2420.                                                                                                      | 1.4              | 45           |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Peripubertal-onset but not adult-onset obesity increases IGF-I and drives development of lean mass,<br>which may lessen the metabolic impairment in adult obesity. American Journal of Physiology -<br>Endocrinology and Metabolism, 2012, 303, E1151-E1157. | 1.8 | 18        |
| 38 | Homologous and Heterologous in Vitro Regulation of Pituitary Receptors for Somatostatin, Growth<br>Hormone (GH)-Releasing Hormone, and Ghrelin in a Nonhuman Primate (Papio anubis). Endocrinology,<br>2012, 153, 264-272.                                   | 1.4 | 17        |
| 39 | Ablation of Leptin Signaling to Somatotropes: Changes in Metabolic Factors that Cause Obesity.<br>Endocrinology, 2012, 153, 4705-4715.                                                                                                                       | 1.4 | 20        |
| 40 | The Adult Pituitary Shows Stem/Progenitor Cell Activation in Response to Injury and Is Capable of Regeneration. Endocrinology, 2012, 153, 3224-3235.                                                                                                         | 1.4 | 87        |
| 41 | Role of ghrelin system in neuroprotection and cognitive functions: Implications in Alzheimer's disease. Peptides, 2011, 32, 2225-2228.                                                                                                                       | 1.2 | 91        |
| 42 | A Novel Human Ghrelin Variant (In1-Ghrelin) and Ghrelin-O-Acyltransferase Are Overexpressed in<br>Breast Cancer: Potential Pathophysiological Relevance. PLoS ONE, 2011, 6, e23302.                                                                          | 1.1 | 67        |
| 43 | Does the pituitary somatotrope play a primary role in regulating GH output in metabolic extremes?.<br>Annals of the New York Academy of Sciences, 2011, 1220, 82-92.                                                                                         | 1.8 | 23        |
| 44 | Elevated GH/IGF-I, Due to Somatotrope-Specific Loss of Both IGF-I and Insulin Receptors, Alters Glucose<br>Homeostasis and Insulin Sensitivity in a Diet-Dependent Manner. Endocrinology, 2011, 152, 4825-4837.                                              | 1.4 | 32        |
| 45 | Cortistatin Is Not a Somatostatin Analogue but Stimulates Prolactin Release and Inhibits GH and ACTH<br>in a Gender-Dependent Fashion: Potential Role of Ghrelin. Endocrinology, 2011, 152, 4800-4812.                                                       | 1.4 | 59        |
| 46 | The Somatotrope as a Metabolic Sensor: Deletion of Leptin Receptors Causes Obesity. Endocrinology, 2011, 152, 69-81.                                                                                                                                         | 1.4 | 45        |
| 47 | Impact of <i>gsp</i> Oncogene on the mRNA Content for Somatostatin and Dopamine<br>Receptors in Human Somatotropinomas. Neuroendocrinology, 2011, 93, 40-47.                                                                                                 | 1.2 | 19        |
| 48 | Kisspeptin Regulates Gonadotroph and Somatotroph Function in Nonhuman Primate Pituitary via<br>Common and Distinct Signaling Mechanisms. Endocrinology, 2011, 152, 957-966.                                                                                  | 1.4 | 85        |
| 49 | Somatostatin and its receptors contribute in a tissue-specific manner to the sex-dependent metabolic<br>(fed/fasting) control of growth hormone axis in mice. American Journal of Physiology -<br>Endocrinology and Metabolism, 2011, 300, E46-E54.          | 1.8 | 34        |
| 50 | Metabolic Impact of Adult-Onset, Isolated, Growth Hormone Deficiency (AOiGHD) Due to Destruction of Pituitary Somatotropes. PLoS ONE, 2011, 6, e15767.                                                                                                       | 1.1 | 60        |
| 51 | Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cellular and Molecular Life Sciences, 2010, 67, 1147-1163.                                                                           | 2.4 | 59        |
| 52 | The Somatotrope as a Metabolic Sensor: Deletion of Leptin Receptors Causes Obesity. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 5455-5455.                                                                                                   | 1.8 | 0         |
| 53 | The Somatotrope as a Metabolic Sensor: Deletion of Leptin Receptors Causes Obesity. Endocrine<br>Reviews, 2010, 31, 941-941.                                                                                                                                 | 8.9 | 1         |
| 54 | lleal apical Na <sup>+</sup> -dependent bile acid transporter ASBT is upregulated in rats with diabetes<br>mellitus induced by low doses of streptozotocin. American Journal of Physiology - Renal Physiology,<br>2010, 299, G898-G906.                      | 1.6 | 13        |

| #  | Article                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Targeted Deletion of Somatotroph Insulin-Like Growth Factor-I Signaling in a Cell-Specific Knockout<br>Mouse Model. Molecular Endocrinology, 2010, 24, 1077-1089.                                                                                                                                                                              | 3.7 | 47        |
| 56 | M1680 Reduced Npra Expression Impairs Somatostatin-Induced Inhibition of Gastric Acid Secretion.<br>Gastroenterology, 2010, 138, S-397.                                                                                                                                                                                                        | 0.6 | 0         |
| 57 | Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Molecular and Cellular Endocrinology, 2010, 317, 154-160.                                                                                                                                                              | 1.6 | 101       |
| 58 | Expression of the Ghrelin and Neurotensin Systems is Altered in the Temporal Lobe of Alzheimer's<br>Disease Patients. Journal of Alzheimer's Disease, 2010, 22, 819-828.                                                                                                                                                                       | 1.2 | 89        |
| 59 | Use of the Metallothionein Promoter-Human Growth Hormone-Releasing Hormone (GHRH) Mouse to<br>Identify Regulatory Pathways that Suppress Pituitary Somatotrope Hyperplasia and Adenoma<br>Formation due to GHRH-Receptor Hyperactivation. Endocrinology, 2009, 150, 3177-3185.                                                                 | 1.4 | 16        |
| 60 | Expression Analysis of Dopamine Receptor Subtypes in Normal Human Pituitaries, Nonfunctioning<br>Pituitary Adenomas and Somatotropinomas, and the Association between Dopamine and Somatostatin<br>Receptors with Clinical Response to Octreotide-LAR in Acromegaly. Journal of Clinical Endocrinology<br>and Metabolism, 2009, 94, 1931-1937. | 1.8 | 120       |
| 61 | W1651 Ileal Apical Sodium-Dependent Bile Acid Transporter (ASBT) Is Upregulated in Rat Model of<br>Diabetes Mellitus. Gastroenterology, 2009, 136, A-710.                                                                                                                                                                                      | 0.6 | 0         |
| 62 | Eliminating leptin signals to somatotropes reduces GH and fertility and causes obesity in adults.<br>FASEB Journal, 2009, 23, LB28.                                                                                                                                                                                                            | 0.2 | 0         |
| 63 | Role of endogenous somatostatin in regulating CH output under basal conditions and in response to metabolic extremes. Molecular and Cellular Endocrinology, 2008, 286, 155-168.                                                                                                                                                                | 1.6 | 42        |
| 64 | Foreword. Molecular and Cellular Endocrinology, 2008, 286, 1-2.                                                                                                                                                                                                                                                                                | 1.6 | 5         |
| 65 | Quantitative analysis of somatostatin receptor subtypes $(1\hat{a}\in 5)$ gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. European Journal of Endocrinology, 2008, 158, 295-303.                                                                   | 1.9 | 160       |
| 66 | Disruption of Growth Hormone Signaling Retards Prostate Carcinogenesis in the Probasin/TAg Rat.<br>Endocrinology, 2008, 149, 1366-1376.                                                                                                                                                                                                        | 1.4 | 31        |
| 67 | Quantitative analysis of somatostatin receptor subtype (SSTR1–5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. European Journal of Endocrinology, 2007, 156, 65-74.                                                                                                                                       | 1.9 | 196       |
| 68 | Effects of leptin replacement on hypothalamic-pituitary growth hormone axis function and<br>circulating ghrelin levels in ob/ob mice. American Journal of Physiology - Endocrinology and<br>Metabolism, 2007, 292, E891-E899.                                                                                                                  | 1.8 | 72        |
| 69 | Nutritional regulation of adipose tissue apolipoprotein E expression. American Journal of Physiology -<br>Endocrinology and Metabolism, 2007, 293, E203-E209.                                                                                                                                                                                  | 1.8 | 42        |
| 70 | Reporter Expression, Induced by a Growth Hormone Promoter-Driven Cre Recombinase (rGHp-Cre)<br>Transgene, Questions the Developmental Relationship between Somatotropes and Lactotropes in the<br>Adult Mouse Pituitary Gland. Endocrinology, 2007, 148, 1946-1953.                                                                            | 1.4 | 63        |
| 71 | Evidence that Ghrelin Is as Potent as Growth Hormone (GH)-Releasing Hormone (GHRH) in Releasing GH<br>from Primary Pituitary Cell Cultures of a Nonhuman Primate (Papio anubis), Acting through<br>Intracellular Signaling Pathways Distinct from GHRH. Endocrinology, 2007, 148, 4440-4449.                                                   | 1.4 | 60        |
| 72 | Severity of the Catabolic Condition Differentially Modulates Hypothalamic Expression of Growth<br>Hormone-Releasing Hormone in the Fasted Mouse: Potential Role of Neuropeptide Y and<br>Corticotropin-Releasing Hormone. Endocrinology, 2007, 148, 300-309.                                                                                   | 1.4 | 74        |

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Regulation of Hypothalamic Expression of KiSS-1 and GPR54 Genes by Metabolic Factors: Analyses Using<br>Mouse Models and a Cell Line. Endocrinology, 2007, 148, 4601-4611.                                                                                                | 1.4 | 235       |
| 74 | Identification of a mouse ghrelin gene transcript that contains intron 2 and is regulated in the pituitary and hypothalamus in response to metabolic stress. Journal of Molecular Endocrinology, 2007, 38, 511-521.                                                       | 1.1 | 50        |
| 75 | Gender-Dependent Role of Endogenous Somatostatin in Regulating Growth Hormone-Axis Function in<br>Mice. Endocrinology, 2007, 148, 5998-6006.                                                                                                                              | 1.4 | 40        |
| 76 | A mutant allele of BARA/LIN-9 rescues the cdk4â^'/â^' phenotype by releasing the repression on E2F-regulated genes. Experimental Cell Research, 2006, 312, 2465-2475.                                                                                                     | 1.2 | 12        |
| 77 | Impact of Obesity on the Growth Hormone Axis: Evidence for a Direct Inhibitory Effect of<br>Hyperinsulinemia on Pituitary Function. Endocrinology, 2006, 147, 2754-2763.                                                                                                  | 1.4 | 135       |
| 78 | Identification of the Somatostatin Receptor Subtypes (sst) Mediating the Divergent,<br>Stimulatory/Inhibitory Actions of Somatostatin on Growth Hormone Secretion. Endocrinology, 2006,<br>147, 2902-2908.                                                                | 1.4 | 30        |
| 79 | Examination of the direct effects of metabolic factors on somatotrope function in a non-human primate model, Papio anubis. Journal of Molecular Endocrinology, 2006, 37, 25-38.                                                                                           | 1.1 | 60        |
| 80 | Evidence that endogenous SST inhibits ACTH and ghrelin expression by independent pathways.<br>American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E395-E403.                                                                                        | 1.8 | 69        |
| 81 | Differential responses of the growth hormone axis in two rat models of streptozotocin-induced insulinopenic diabetes. Journal of Endocrinology, 2006, 188, 263-270.                                                                                                       | 1.2 | 44        |
| 82 | Cortistatin mimics somatostatin by inducing a dual, dose-dependent stimulatory and inhibitory effect<br>on growth hormone secretion in somatotropes. Journal of Molecular Endocrinology, 2006, 36,<br>547-556.                                                            | 1.1 | 29        |
| 83 | Mutation of BARA/LINâ€9 rescues the CDK4â€null phenotype by releasing the repression on E2Fâ€regulated genes. FASEB Journal, 2006, 20, A38.                                                                                                                               | 0.2 | Ο         |
| 84 | Expression Analysis of Hypothalamic and Pituitary Components of the Growth Hormone Axis in Fasted<br>and Streptozotocin-Treated Neuropeptide Y (NPY)-Intact (NPY <sup>+/+</sup> ) and NPY-Knockout<br>(NPY <sup> –/–</sup> ) Mice. Neuroendocrinology, 2005, 81, 360-371. | 1.2 | 33        |
| 85 | Fasting-induced changes in the hypothalamic-pituitary-GH axis in the absence of GH expression: lessons from the spontaneous dwarf rat. Journal of Endocrinology, 2004, 180, 369-378.                                                                                      | 1.2 | 47        |
| 86 | Homologous and heterologous in vitro regulation of pig pituitary somatostatin receptor subtypes, sst1, sst2 and sst5 mRNA. Journal of Molecular Endocrinology, 2004, 32, 437-448.                                                                                         | 1.1 | 21        |
| 87 | Homologous and Heterologous Regulation of Pituitary Receptors for Ghrelin and Growth<br>Hormone-Releasing Hormone. Endocrinology, 2004, 145, 3182-3189.                                                                                                                   | 1.4 | 53        |
| 88 | The Role of Pituitary Ghrelin in Growth Hormone (GH) Secretion: GH-Releasing Hormone-Dependent<br>Regulation of Pituitary Ghrelin Gene Expression and Peptide Content. Endocrinology, 2004, 145,<br>3731-3738.                                                            | 1.4 | 60        |
| 89 | Cdk4 Is Indispensable for Postnatal Proliferation of the Anterior Pituitary. Journal of Biological Chemistry, 2004, 279, 51100-51106.                                                                                                                                     | 1.6 | 69        |
| 90 | Role of Glucocorticoids in the Regulation of Pituitary Somatostatin Receptor Subtype (sst1–sst5)<br>mRNA Levels: Evidence for Direct and Somatostatin-Mediated Effects. Neuroendocrinology, 2003, 78,<br>163-175.                                                         | 1.2 | 46        |

| #   | Article                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pituitary Hypoplasia and Lactotroph Dysfunction in Mice Deficient for Cyclin-Dependent Kinase-4.<br>Endocrinology, 2002, 143, 3001-3008.                                                                                                                                                          | 1.4 | 70        |
| 92  | Growth hormone-releasing hormone and pituitary development, hyperplasia and tumorigenesis.<br>Trends in Endocrinology and Metabolism, 2002, 13, 299-303.                                                                                                                                          | 3.1 | 66        |
| 93  | Glucocorticoids Regulate Pituitary Growth Hormone Secretagogue Receptor Gene Expression.<br>Journal of Neuroendocrinology, 2001, 12, 481-485.                                                                                                                                                     | 1.2 | 56        |
| 94  | Increase in mRNA Concentrations of Pituitary Receptors for Growth Hormone-Releasing Hormone and<br>Growth Hormone Secretagogues After Neonatal Monosodium Glutamate Treatment. Journal of<br>Neuroendocrinology, 2001, 12, 335-341.                                                               | 1.2 | 9         |
| 95  | The Growth Hormone (GH)-Axis of GH Receptor/Binding Protein Gene-Disrupted and<br>Metallothionein-Human GH-Releasing Hormone Transgenic Mice: Hypothalamic Neuropeptide and<br>Pituitary Receptor Expression in the Absence and Presence of GH Feedback*. Endocrinology, 2001, 142,<br>1117-1123. | 1.4 | 42        |
| 96  | Liver-Derived IGF-I Regulates GH Secretion at the Pituitary Level in Mice. Endocrinology, 2001, 142, 4762-4770.                                                                                                                                                                                   | 1.4 | 74        |
| 97  | p27Kip1-deficient mice exhibit accelerated growth hormone-releasing hormone (GHRH)-induced somatotrope proliferation and adenoma formation. Oncogene, 2000, 19, 1875-1884.                                                                                                                        | 2.6 | 32        |
| 98  | Isolated Familial Somatotropinomas: Establishment of Linkage to Chromosome 11q13.1–11q13.3 and<br>Evidence for a Potential Second Locus at Chromosome 2p16–12 <sup>1</sup> . Journal of Clinical<br>Endocrinology and Metabolism, 2000, 85, 707-714.                                              | 1.8 | 83        |
| 99  | Modulation of Pituitary Somatostatin Receptor Subtype (sst1–5) Messenger Ribonucleic Acid Levels by<br>Changes in the Growth Hormone Axis*. Endocrinology, 2000, 141, 3556-3563.                                                                                                                  | 1.4 | 34        |
| 100 | Authors' Response: Isolated Familial Somatotropinomas: Does the Disease Map to 11q13 or to 2p16?.<br>Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4921-4921.                                                                                                                       | 1.8 | 1         |
| 101 | Antitumorigenic actions of growth hormone-releasing hormone antagonists. Proceedings of the<br>National Academy of Sciences of the United States of America, 2000, 97, 532-534.                                                                                                                   | 3.3 | 44        |
| 102 | Authors' Response: Isolated Familial Somatotropinomas: Does the Disease Map to 11q13 or to 2p16?.<br>Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4921-4921.                                                                                                                       | 1.8 | 6         |
| 103 | Isolated Familial Somatotropinomas: Establishment of Linkage to Chromosome 11q13.1-11q13.3 and Evidence for a Potential Second Locus at Chromosome 2p16-12. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 707-714.                                                                  | 1.8 | 75        |
| 104 | New Insights in the Study of Growth Gained from the Use of Genetic and Transgenic Models. Journal of Animal Science, 1999, 77, 1.                                                                                                                                                                 | 0.2 | 31        |
| 105 | Growth Hormone (CH)-Releasing Hormone (CHRH) and the CH Secretagogue (CHS), L692,585,<br>Differentially Modulate Rat Pituitary CHS Receptor and CHRH Receptor Messenger Ribonucleic Acid<br>Levels1. Endocrinology, 1999, 140, 3581-3586.                                                         | 1.4 | 56        |
| 106 | Expression of Growth Hormone-Releasing Hormone (GHRH) Messenger Ribonucleic Acid and the<br>Presence of Biologically Active GHRH in Human Breast, Endometrial, and Ovarian Cancers1. Journal of<br>Clinical Endocrinology and Metabolism, 1999, 84, 582-589.                                      | 1.8 | 96        |
| 107 | Loss of Heterozygosity on Chromosome 11q13 in Two Families with Acromegaly/Gigantism Is<br>Independent of Mutations of the Multiple Endocrine Neoplasia Type I Gene <sup>1</sup> . Journal of<br>Clinical Endocrinology and Metabolism, 1999, 84, 249-256.                                        | 1.8 | 80        |
| 108 | Growth Hormoneâ€Releasing Hormone Receptor (GNRHâ€R) and Growth Hormone Secretagogue Receptor<br>(GHSâ€R) mRNA Levels During Postnatal Development in Male and Female Rats. Journal of<br>Neuroendocrinology, 1999, 11, 299-306.                                                                  | 1.2 | 63        |

| #   | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Familial Somatotropinomas. , 1999, 9, 277-285.                                                                                                                                                                                                              |      | 16        |
| 110 | Animal Models of Growth Hormone Deficiency as Tools to Study Growth Hormone Releasing Mechanisms. , 1999, , 105-113.                                                                                                                                        |      | 2         |
| 111 | Loss of Heterozygosity on Chromosome 11q13 in Two Families with Acromegaly/Gigantism Is<br>Independent of Mutations of the Multiple Endocrine Neoplasia Type I Gene. Journal of Clinical<br>Endocrinology and Metabolism, 1999, 84, 249-256.                | 1.8  | 56        |
| 112 | Expression of Growth Hormone-Releasing Hormone (GHRH) Messenger Ribonucleic Acid and the<br>Presence of Biologically Active GHRH in Human Breast, Endometrial, and Ovarian Cancers. Journal of<br>Clinical Endocrinology and Metabolism, 1999, 84, 582-589. | 1.8  | 70        |
| 113 | Genetic and Transgenic Models to Investigate the Growth Hormone Axis and Sexual Dimorphism. , 1999, , 293-300.                                                                                                                                              |      | 0         |
| 114 | Expression of a fusion gene consisting of the mouse growth hormone-releasing hormone gene<br>promoter linked to the SV40 T-antigen gene in transgenic mice. Molecular and Cellular<br>Endocrinology, 1998, 137, 161-168.                                    | 1.6  | 5         |
| 115 | Hypothalamic/Pituitary-Axis of the Spontaneous Dwarf Rat: Autofeedback Regulation of Growth<br>Hormone (GH) Includes Suppression of GH Releasing-Hormone Receptor Messenger Ribonucleic Acid*.<br>Endocrinology, 1998, 139, 3554-3560.                      | 1.4  | 62        |
| 116 | Growth Hormone-Dependent Regulation of Pituitary GH Secretagogue Receptor (GHS-R) mRNA Levels in the Spontaneous Dwarf Rat. Neuroendocrinology, 1998, 68, 312-318.                                                                                          | 1.2  | 52        |
| 117 | Homologous Down-Regulation of Growth Hormone-Releasing Hormone Receptor Messenger<br>Ribonucleic Acid Levels*. Endocrinology, 1997, 138, 1058-1065.                                                                                                         | 1.4  | 66        |
| 118 | Effects of Antagonists of Growth Hormone-Releasing Hormone (GHRH) on GH and Insulin-Like Growth<br>Factor I Levels in Transgenic Mice Overexpressing the Human GHRH Gene, an Animal Model of<br>Acromegaly*. Endocrinology, 1997, 138, 4536-4542.           | 1.4  | 35        |
| 119 | Enhanced Growth of Mice Lacking the Cyclin-Dependent Kinase Inhibitor Function of p27Kip1. Cell, 1996, 85, 721-732.                                                                                                                                         | 13.5 | 1,188     |
| 120 | Role of guanine nucleotide-binding proteins, Giα3 and Gsα, in dopamine and thyrotropin-releasing<br>hormone signal transduction: evidence for competition and commonality. Journal of Endocrinology,<br>1996, 148, 447-455.                                 | 1.2  | 15        |
| 121 | Dynamic monitoring and quantification of gene expression in single, living cells: a molecular basis for secretory cell heterogeneity. Molecular Endocrinology, 1996, 10, 599-605.                                                                           | 3.7  | 30        |
| 122 | Secretory characteristics and phenotypic plasticity of growth hormone- and prolactin-producing cell<br>lines. Journal of Endocrinology, 1994, 140, 455-463.                                                                                                 | 1.2  | 11        |
| 123 | Des-acetylated variants of α-melanocyte-stimulating hormone and β-endorphin can antagonize the mammotrope-recruiting activity of their acetylated forms. Journal of Endocrinology, 1993, 139, 295-300.                                                      | 1.2  | 2         |
| 124 | The ontogenic and functional relationships between growth hormone- and prolactin-releasing cells during the development of the bovine pituitary. Journal of Endocrinology, 1992, 134, 91-96.                                                                | 1.2  | 30        |
| 125 | Mammosomatotropes Are Abundant in Bovine Pituitaries: Influence of Gonadal Status*.<br>Endocrinology, 1991, 128, 2229-2233.                                                                                                                                 | 1.4  | 34        |
| 126 | Immunocytochemical Localization of Luteinizing Hormone-Releasing Hormone within the Olfactory<br>Bulb of Pigs1. Biology of Reproduction, 1991, 44, 299-304.                                                                                                 | 1.2  | 6         |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Fluctuations in the Proportions of Growth Hormone- and Prolactin-Secreting Cells during the Bovine Estrous Cycle <sup>*</sup> . Endocrinology, 1991, 129, 1221-1225.                                                                                            | 1.4 | 34        |
| 128 | Bovine Pituitary Cells Exhibit a Unique Form of Somatotrope Secretory Heterogeneity*.<br>Endocrinology, 1990, 127, 2229-2235.                                                                                                                                   | 1.4 | 29        |
| 129 | Effects of Prolactin on Target Cells. Neuroendocrine Perspectives, 1990, , 39-75.                                                                                                                                                                               | 0.6 | 0         |
| 130 | Localization of Proopiomelanocortin (POMC) Immunoreactive Neurons in the Forebrain of the Pig13.<br>Biology of Reproduction, 1989, 40, 1119-1126.                                                                                                               | 1.2 | 41        |
| 131 | Relative Importance of Newly Synthesized and Stored Hormone to Basal Secretion by Growth Hormone and Prolactin Cells*. Endocrinology, 1989, 125, 1904-1909.                                                                                                     | 1.4 | 23        |
| 132 | A Cellular Basis for Growth Hormone Deficiency in the Dwarf Rat: Analysis of Growth Hormone and<br>Prolactin Release by Reverse Hemolytic Plaque Assay*. Endocrinology, 1989, 125, 2035-2040.                                                                   | 1.4 | 24        |
| 133 | Luteinizing hormone secretion following intracerebroventricular administration of morphine in the prepuberal gilt. Life Sciences, 1989, 45, 691-696.                                                                                                            | 2.0 | 10        |
| 134 | Localization of Luteinizing Hormone-Releasing Hormone in the Forebrain of the Pig1. Biology of Reproduction, 1988, 39, 665-672.                                                                                                                                 | 1.2 | 53        |
| 135 | Mammary Growth Response of Holstein Heifers to Photoperiod. Journal of Dairy Science, 1985, 68,<br>86-90.                                                                                                                                                       | 1.4 | 30        |
| 136 | Steroids can modulate transdifferentiation of prolactin and growth hormone cells in bovine pituitary cultures , 0, .                                                                                                                                            |     | 25        |
| 137 | Homologous Down-Regulation of Growth Hormone-Releasing Hormone Receptor Messenger<br>Ribonucleic Acid Levels. , 0, .                                                                                                                                            |     | 23        |
| 138 | Liver-Derived IGF-I Regulates GH Secretion at the Pituitary Level in Mice. , 0, .                                                                                                                                                                               |     | 13        |
| 139 | The Growth Hormone (GH)-Axis of GH Receptor/Binding Protein Gene-Disrupted and<br>Metallothionein-Human GH-Releasing Hormone Transgenic Mice: Hypothalamic Neuropeptide and<br>Pituitary Receptor Expression in the Absence and Presence of GH Feedback. , 0, . |     | 22        |
| 140 | Pituitary Hypoplasia and Lactotroph Dysfunction in Mice Deficient for Cyclin-Dependent Kinase-4. , 0, .                                                                                                                                                         |     | 22        |
| 141 | The consequences of changing endogenous GH/IGF1 levels on carcinogen-induced mammary gland tumorigenesis are dependent on metabolic status in mice. Endocrine Abstracts, 0, , .                                                                                 | 0.0 | 0         |
| 142 | Energy status and GH/IGF1 axis. Endocrine Abstracts, 0, , .                                                                                                                                                                                                     | 0.0 | 0         |
| 143 | The dopastatin BIM-23A760 distinctly influences key functional endpoints in different types of pituitary adenomas and normal pituitaries: role of somatostatin and dopamine receptor profile. Endocrine Abstracts, 0, , .                                       | 0.0 | 0         |