Wenlei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11111717/publications.pdf Version: 2024-02-01

WENLELIANC

#	Article	IF	CITATIONS
1	Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Advanced Drug Delivery Reviews, 2005, 57, 391-410.	13.7	429
2	Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. , 2001, 18, 878-885.		175
3	<i>In vitro</i> and <i>in vivo</i> characterizations of PEGylated liposomal doxorubicin. Bioanalysis, 2011, 3, 333-344.	1.5	96
4	The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. International Journal of Pharmaceutics, 2011, 418, 151-160.	5.2	81
5	Generic-to-generic lamotrigine switches in people with epilepsy: the randomised controlled EQUIGEN trial. Lancet Neurology, The, 2016, 15, 365-372.	10.2	79
6	Assessment of tacrolimus intrapatient variability in stable adherent transplant recipients: Establishing baseline values. American Journal of Transplantation, 2019, 19, 1410-1420.	4.7	79
7	Generic lamotrigine versus brandâ€name <scp>Lamictal</scp> bioequivalence in patients with epilepsy: A field test of the <scp>FDA</scp> bioequivalence standard. Epilepsia, 2015, 56, 1415-1424.	5.1	68
8	Stabilization of Tetanus Toxoid Encapsulated in PLGA Microspheres. Molecular Pharmaceutics, 2008, 5, 808-817.	4.6	58
9	A Bioequivalence Approach for Generic Narrow Therapeutic Index Drugs: Evaluation of the Reference-Scaled Approach and Variability Comparison Criterion. AAPS Journal, 2015, 17, 891-901.	4.4	45
10	Effect of Common Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class 3 Drugs Cimetidine and Acyclovir. Journal of Pharmaceutical Sciences, 2016, 105, 996-1005.	3.3	43
11	Stabilization of a Model Formalinized Protein Antigen Encapsulated in Poly(lactideâ€coâ€glycolide)â€Based Microspheres. Journal of Pharmaceutical Sciences, 2001, 90, 1558-1569.	3.3	42
12	Bioequivalence Between Generic and Branded Lamotrigine in People With Epilepsy. JAMA Neurology, 2017, 74, 919.	9.0	41
13	Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials. AAPS Journal, 2017, 19, 619-631.	4.4	39
14	Formaldehyde-mediated aggregation of protein antigens: Comparison of untreated and formalinized model antigens. Biotechnology and Bioengineering, 2000, 70, 507-517.	3.3	38
15	Development of a Flow-Through USP-4 Apparatus Drug Release Assay to Evaluate Doxorubicin Liposomes. AAPS Journal, 2017, 19, 150-160.	4.4	30
16	Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 107-116.	4.3	30
17	Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial. PLoS Medicine, 2017, 14, e1002428.	8.4	29
18	Report of the AAPS Guidance Forum on the FDA Draft Guidance for Industry: "Drug Products, Including Biological Products, that Contain Nanomaterials― AAPS Journal, 2019, 21, 56.	4.4	28

Wenlei Jiang

#	Article	IF	CITATIONS
19	Biopharmaceutic Risk Assessment of Brand and Generic Lamotrigine Tablets. Molecular Pharmaceutics, 2015, 12, 2436-2443.	4.6	25
20	How Has CDER Prepared for the Nano Revolution? A Review of Risk Assessment, Regulatory Research, and Guidance Activities. AAPS Journal, 2017, 19, 1071-1083.	4.4	22
21	Direct quantification of unencapsulated doxorubicin in liposomal doxorubicin formulations using capillary electrophoresis. International Journal of Pharmaceutics, 2018, 549, 109-114.	5.2	22
22	CDER Risk Assessment Exercise to Evaluate Potential Risks from the Use of Nanomaterials in Drug Products. AAPS Journal, 2013, 15, 623-628.	4.4	18
23	Quantification of phospholipid degradation products in liposomal pharmaceutical formulations by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). International Journal of Pharmaceutics, 2020, 578, 119077.	5.2	18
24	Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Physicochemical Characterization. Nanomaterials, 2018, 8, 25.	4.1	15
25	Evaluation of size-based distribution of drug and excipient in amphotericin B liposomal formulation. International Journal of Pharmaceutics, 2019, 569, 118603.	5.2	15
26	Snapshots of Iron Speciation: Tracking the Fate of Iron Nanoparticle Drugs via a Liquid Chromatography–Inductively Coupled Plasma–Mass Spectrometric Approach. Molecular Pharmaceutics, 2019, 16, 1272-1281.	4.6	14
27	Generic Versions of Narrow Therapeutic Index Drugs: A National Survey of Pharmacists' Substitution Beliefs and Practices. Clinical Pharmacology and Therapeutics, 2018, 103, 1093-1099.	4.7	13
28	Evaluation of Switching Patterns in FDA's Sentinel System: A New Tool to Assess Generic Drugs. Drug Safety, 2018, 41, 1313-1323.	3.2	12
29	Effects of Dissolution Medium pH and Simulated Gastrointestinal Contraction on Drug Release From Nifedipine Extended-Release Tablets*. Journal of Pharmaceutical Sciences, 2019, 108, 1189-1194.	3.3	12
30	InÂVitro Evaluation of Nasogastric Tube Delivery Performance of Esomeprazole Magnesium Delayed-Release Capsules. Journal of Pharmaceutical Sciences, 2017, 106, 1859-1864.	3.3	11
31	Development of In Vitro Dissolution Testing Methods to Simulate Fed Conditions for Immediate Release Solid Oral Dosage Forms. AAPS Journal, 2022, 24, 40.	4.4	11
32	Quantification of Lamotrigine in Patient Plasma Using a Fast Liquid Chromatography–Tandem Mass Spectrometry Method With Backflush Technology. Therapeutic Drug Monitoring, 2015, 37, 188-197.	2.0	8
33	Use of Therapeutic Drug Monitoring, Electronic Health Record Data, and Pharmacokinetic Modeling to Determine the Therapeutic Index of Phenytoin and Lamotrigine. Therapeutic Drug Monitoring, 2016, 38, 728-737.	2.0	8
34	A Survey of Patients' Perceptions of Pill Appearance and Responses to Changes in Appearance for Four Chronic Disease Medications. Journal of General Internal Medicine, 2019, 34, 420-428.	2.6	8
35	Analysis of verteporfin liposomal formulations for phospholipids and phospholipid degradation products by liquid chromatography-mass spectrometry (LC-MS). Journal of Pharmaceutical and Biomedical Analysis, 2022, 208, 114473.	2.8	8
36	Bioequivalence for Liposomal Drug Products. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 275-296.	0.6	7

Wenlei Jiang

#	Article	IF	CITATIONS
37	Outcomes Associated with Generic Drugs Approved Using Product-Specific Determinations of Therapeutic Equivalence. Drugs, 2017, 77, 427-433.	10.9	7
38	Exploring generic brittleness and the demographic factors for its susceptibility in patients with epilepsy. Epilepsy and Behavior, 2019, 90, 197-203.	1.7	7
39	In vitro and in vivo DFO-chelatable labile iron release profiles among commercially available intravenous iron nanoparticle formulations. Regulatory Toxicology and Pharmacology, 2018, 97, 17-23.	2.7	6
40	Switch-backs associated with generic drugs approved using product-specific determinations of therapeutic equivalence. Pharmacoepidemiology and Drug Safety, 2016, 25, 944-952.	1.9	5
41	Reply to "On the Effect of Common Excipients on the Oral Absorption of Class 3 Drugs― Journal of Pharmaceutical Sciences, 2016, 105, 1355-1357.	3.3	5
42	Evaluation of the Physicochemical Properties of the Iron Nanoparticle Drug Products: Brand and Generic Sodium Ferric Gluconate. Molecular Pharmaceutics, 2021, 18, 1544-1557.	4.6	5
43	Risk-Based Bioequivalence Recommendations for Antiepileptic Drugs. Current Neurology and Neuroscience Reports, 2017, 17, 82.	4.2	4
44	In vitro Approaches to Support Bioequivalence and Substitutability of Generic Proton Pump Inhibitors via Nasogastric Tube Administration. AAPS Journal, 2017, 19, 1593-1599.	4.4	3
45	Relationship of antiepileptic drugs to generic brittleness in patients with epilepsy. Epilepsy and Behavior, 2020, 105, 106936.	1.7	3
46	Lack of Association of Generic Brittle Status with Genetics and Physiologic Measures in Patients with Epilepsy. Pharmaceutical Research, 2020, 37, 60.	3.5	1
47	Lack of association between generic brittleness and neuropsychiatric measures in patients with enilensy. Follensy and Behavior, 2022, 128, 108587	1.7	0