Dong Young Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11110855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nature Communications, 2017, 8, 14553.	5.8	218
2	High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix. Journal of Materials Chemistry A, 2016, 4, 6395-6403.	5.2	52
3	Nanoporous silver cathodes surface-treated by atomic layer deposition of Y:ZrO2 for high-performance low-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 295, 175-181.	4.0	48
4	Surface Tuning of Solid Oxide Fuel Cell Cathode by Atomic Layer Deposition. Advanced Energy Materials, 2018, 8, 1802506.	10.2	48
5	High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate–Zirconate Electrolytes on Compositionally Gradient Anodes. ACS Applied Materials & Interfaces, 2016, 8, 9097-9103.	4.0	43
6	High performance low-temperature solid oxide fuel cells with atomic layer deposited-yttria stabilized zirconia embedded thin film electrolyte. Journal of Materials Chemistry A, 2018, 6, 7401-7408.	5.2	38
7	Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells. Journal of Power Sources, 2015, 291, 239-245.	4.0	36
8	Low-temperature performance of yttria-stabilized zirconia prepared by atomic layer deposition. Journal of Power Sources, 2015, 274, 611-618.	4.0	35
9	Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes. Journal of Power Sources, 2014, 248, 1163-1169.	4.0	33
10	Highâ€Performance Silver Cathode Surface Treated with Scandia‣tabilized Zirconia Nanoparticles for Intermediate Temperature Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1601956.	10.2	32
11	Performance Degradation of Lanthanum Strontium Cobaltite after Surface Modification. Journal of the Electrochemical Society, 2015, 162, F622-F626.	1.3	27
12	Fabrication of Lanthanum Strontium Cobalt Ferrite–Gadolinium-Doped Ceria Composite Cathodes Using a Low-Price Inkjet Printer. ACS Applied Materials & Interfaces, 2017, 9, 39347-39356.	4.0	25
13	Evaluation of porous platinum, nickel, and lanthanum strontium cobaltite as electrode materials for low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 17828-17835.	3.8	23
14	Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 301, 72-77.	4.0	21
15	Influence of background oxygen pressure on film properties of pulsed laser deposited Y:BaZrO3. Thin Solid Films, 2014, 552, 24-31.	0.8	20
16	High Performance Anode-Supported Solid Oxide Fuel Cells with Thin Film Yttria-Stabilized Zirconia Membrane Prepared by Aerosol-Assisted Chemical Vapor Deposition. Journal of the Electrochemical Society, 2017, 164, F484-F490.	1.3	19
17	lonic properties of ultrathin yttria-stabilized zirconia thin films fabricated by atomic layer deposition with water, oxygen, and ozone. Thin Solid Films, 2015, 589, 441-445.	0.8	14
18	La0.6Sr0.4Co0.2Fe0.8O3-l´ cathode surface-treated with La2NiO4+l´ by aerosol-assisted chemical vapor deposition for high performance solid oxide fuel cells. Ceramics International, 2019, 45, 12366-12371.	2.3	10

Dong Young Jang

#	Article	IF	CITATIONS
19	Nanoporous silver cathode surface-treated by aerosol-assisted chemical vapor deposition of gadolinia-doped ceria for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 402, 246-251.	4.0	9
20	Design and fabrication of a scanning electron microscope using a finite element analysis for electron optical system. Journal of Mechanical Science and Technology, 2008, 22, 1734-1746.	0.7	8
21	Compositional optimization of gadolinia-doped ceria treatment for enhanced oxygen reduction kinetics in low-temperature solid oxide fuel cells. Thin Solid Films, 2017, 624, 95-100.	0.8	6
22	Fabrication of ion conductive tin oxide-phosphate amorphous thin films by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	4
23	On the reduced electrical conductivity of radio-frequency sputtered doped ceria thin film by elevating the substrate temperature. Current Applied Physics, 2016, 16, 324-328.	1.1	4
24	Fabrication of NiO-Y:BaZrO ₃ Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting. Journal of the Korean Ceramic Society, 2015, 52, 320-324.	1.1	4
25	Design and fabrication of a scanning electron microscope (SEM) with an electrostatic column for process embedment. Journal of the Korean Physical Society, 2013, 63, 1287-1290.	0.3	0
26	Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 405-410.	2.7	0