
K Ramesh Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11110439/publications.pdf Version: 2024-02-01

K PAMESH REDDY

#	Article	IF	CITATIONS
1	Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry, 2013, 115, 363-383.	3.5	162
2	Short-Term Response of Carbon Cycling to Salinity Pulses in a Freshwater Wetland. Soil Science Society of America Journal, 2011, 75, 2000-2007.	2.2	144
3	Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary, China. Journal of Hydrology, 2015, 520, 186-192.	5.4	103
4	Litter Decomposition and Nutrient Dynamics in a Phosphorus Enriched Everglades Marsh. Biogeochemistry, 2005, 75, 217-240.	3.5	87
5	Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. Journal of Paleolimnology, 2012, 47, 693-706.	1.6	86
6	Phosphorus Transformations during Decomposition of Wetland Macrophytes. Environmental Science & Technology, 2010, 44, 9265-9271.	10.0	71
7	Spatial Distribution of Soil Properties in Water Conservation Area 3 of the Everglades. Soil Science Society of America Journal, 2006, 70, 1662-1676.	2.2	65
8	Overestimation of Organic Phosphorus in Wetland Soils by Alkaline Extraction and Molybdate Colorimetry. Environmental Science & Technology, 2006, 40, 3349-3354.	10.0	64
9	Influence of hydrologic regime and vegetation on phosphorus retention in Everglades stormwater treatment area wetlands. Hydrological Processes, 2004, 18, 343-355.	2.6	56
10	Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime. PLoS ONE, 2014, 9, e107738.	2.5	47
11	Investigating the use of macrophyte stable C and N isotopic ratios as indicators of wetland eutrophication: Patterns in the P-affected Everglades. Limnology and Oceanography, 2006, 51, 2380-2387.	3.1	43
12	Soil Phosphorus Forms along a Strong Nutrient Gradient in a Tropical Ombrotrophic Wetland. Soil Science Society of America Journal, 2012, 76, 1496-1506.	2.2	42
13	CHARACTERIZATION OF THE SPATIAL DISTRIBUTION OF SOIL PROPERTIES IN WATER CONSERVATION AREA 2A, EVERGLADES, FLORIDA. Soil Science, 2007, 172, 149-166.	0.9	40
14	Linking Phosphorus Sequestration to Carbon Humification in Wetland Soils by ³¹ P and ¹³ C NMR Spectroscopy. Environmental Science & Technology, 2012, 46, 4775-4782.	10.0	40
15	Soil Phosphorus Forms in Hydrologically Isolated Wetlands and Surrounding Pasture Uplands. Journal of Environmental Quality, 2010, 39, 1517-1525.	2.0	38
16	Nitrogen Transformations in Submerged Soils. Agronomy, 0, , 401-436.	0.2	38
17	Phosphorus Sorption and Potential Phosphorus Storage in Sediments of Lake Istokpoga and the Upper Chain of Lakes, Florida, USA. Journal of Environmental Quality, 2009, 38, 987-996.	2.0	36
18	Soil Microbial Community Composition in a Restored Calcareous Subtropical Wetland. Soil Science Society of America Journal, 2011, 75, 1731-1740.	2.2	34

K RAMESH REDDY

#	Article	IF	CITATIONS
19	Sample Pretreatment and Phosphorus Speciation in Wetland Soils. Soil Science Society of America Journal, 2007, 71, 1538-1546.	2.2	33
20	Projecting Changes in Everglades Soil Biogeochemistry for Carbon and Other Key Elements, to Possible 2060 Climate and Hydrologic Scenarios. Environmental Management, 2015, 55, 776-798.	2.7	33
21	Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environmental Monitoring and Assessment, 2011, 183, 395-408.	2.7	32
22	Interaction of Phosphorus Compounds with Anionâ€Exchange Membranes: Implications for Soil Analysis. Soil Science Society of America Journal, 2010, 74, 1607-1612.	2.2	28
23	Chemical Composition of Soil Organic Matter in a Subarctic Peatland: Influence of Shifting Vegetation Communities. Soil Science Society of America Journal, 2017, 81, 41-49.	2.2	28
24	The Chemical Nature of Phosphorus in Subtropical Lake Sediments. Aquatic Geochemistry, 2014, 20, 437-457.	1.3	25
25	Nitrous oxide production and consumption by denitrification in a grassland: Effects of grazing and hydrology. Science of the Total Environment, 2015, 532, 702-710.	8.0	22
26	Soil Total Mercury Concentrations across the Greater Everglades. Soil Science Society of America Journal, 2009, 73, 675-685.	2.2	20
27	Microbial Indicators of Eutrophication in Everglades Wetlands. Soil Science Society of America Journal, 2009, 73, 1597-1603.	2.2	20
28	Nitrous Oxide Production and Reduction in Seasonallyâ€Flooded Cultivated Peatland Soils. Soil Science Society of America Journal, 2016, 80, 783-793.	2.2	17
29	Seasonal patterns in decomposition and nutrient release from East African savanna grasses grown under contrasting nutrient conditions. Agriculture, Ecosystems and Environment, 2014, 188, 12-19.	5.3	15
30	Nitrous oxide dynamics during denitrification along a hydrological gradient of subtropical grasslands. Soil Use and Management, 2020, 36, 682-692.	4.9	13
31	Estimating the Stability of Organic Phosphorus in Wetland Soils. Soil Science Society of America Journal, 2010, 74, 1398-1405.	2.2	11
32	Impacts of Hurricane Disturbance on Water Quality across the Aquatic Continuum of a Blackwater River to Estuary Complex. Journal of Marine Science and Engineering, 2020, 8, 412.	2.6	11
33	The effects of herbivory and nutrients on plant biomass and carbon storage in Vertisols of an East African savanna. Agriculture, Ecosystems and Environment, 2015, 208, 55-63.	5.3	9
34	Phosphatase activities in sediments of subtropical lakes with different trophic states. Hydrobiologia, 2017, 788, 305-318.	2.0	9
35	Biogeochemical Indicators of Nutrient Enrichments in Wetlands: The Microbial Response as a Sensitive Indicator of Wetland Eutrophication. , 2014, , 203-222.		5
36	Use of a Modified Chemical Fractionation Scheme to Characterize Organic Nitrogen in Wetland Soils. Soil Science Society of America Journal, 2015, 79, 1509-1517.	2.2	4

K RAMESH REDDY

#	Article	IF	CITATIONS
37	Shifting Ground: Landscape-Scale Modeling of Biogeochemical Processes under Climate Change in the Florida Everglades. Environmental Management, 2019, 64, 416-435.	2.7	4
38	Millennial-Scale Phosphorus Transformations during Diagenesis in a Subtropical Peatland. Soil Science Society of America Journal, 2014, 78, 1087-1096.	2.2	2
39	Response to Comment on "The Chemical Nature of Phosphorus in Subtropical Lake Sedimentsâ€, by Kenney et al Aquatic Geochemistry, 2015, 21, 7-9.	1.3	1
40	Impacts of Hurricanes on Nutrient Export and Ecosystem Metabolism in a Blackwater River Estuary Complex. Journal of Marine Science and Engineering, 2022, 10, 661.	2.6	1