Adham Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11108966/publications.pdf

Version: 2024-02-01

304743 477307 28 1,498 22 29 h-index citations g-index papers 29 29 29 2290 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. Journal of Chromatography A, 2014, 1357, 36-52.	3.7	375
2	Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. Journal of Materials Chemistry A, 2013, 1, 3276.	10.3	140
3	Preparation of Ice-Templated MOF–Polymer Composite Monoliths and Their Application for Wastewater Treatment with High Capacity and Easy Recycling. ACS Applied Materials & Interfaces, 2017, 9, 33979-33988.	8.0	81
4	Tuning Morphology of Nanostructured ZIF-8 on Silica Microspheres and Applications in Liquid Chromatography and Dye Degradation. ACS Applied Materials & Interfaces, 2015, 7, 18054-18063.	8.0	78
5	Macroporous metal–organic framework microparticles with improved liquid phase separation. Journal of Materials Chemistry A, 2014, 2, 9085-9090.	10.3	77
6	Frozen polymerization for aligned porous structures with enhanced mechanical stability, conductivity, and as stationary phase for HPLC. Journal of Materials Chemistry, 2012, 22, 11615.	6.7	70
7	Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 2009, 19, 5212.	6.7	65
8	Hierarchical porous metal–organic framework monoliths. Chemical Communications, 2014, 50, 14314-14316.	4.1	60
9	Oneâ€Pot Synthesis of Spheresâ€onâ€Sphere Silica Particles from a Single Precursor for Fast HPLC with Low Back Pressure. Advanced Materials, 2012, 24, 6042-6048.	21.0	52
10	Cu(<scp>i</scp>)Cu(<scp>ii</scp>)BTC, a microporous mixed-valence MOF via reduction of HKUST-1. RSC Advances, 2016, 6, 8902-8905.	3.6	44
11	Synthesis of Uniform Porous Silica Microspheres with Hydrophilic Polymer as Stabilizing Agent. Industrial & Engineering Chemistry Research, 2010, 49, 602-608.	3.7	43
12	Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 2012, 22, 25027.	6.7	38
13	Freezeâ€Align and Heatâ€Fuse: Microwires and Networks from Nanoparticle Suspensions. Angewandte Chemie - International Edition, 2008, 47, 4573-4576.	13.8	37
14	Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chemical Communications, 2015, 51, 1717-1720.	4.1	34
15	Core–shell microspheres with porous nanostructured shells for liquid chromatography. Journal of Separation Science, 2018, 41, 99-124.	2.5	34
16	Confinedâ€Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage. Chemistry - A European Journal, 2016, 22, 4389-4394.	3.3	33
17	Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 2011, 21, 5753.	6.7	30
18	Investigation on synthesis of spheres-on-sphere silica particles and their assessment for high performance liquid chromatography applications. Journal of Chromatography A, 2012, 1270, 194-203.	3.7	30

#	Article	IF	CITATION
19	Gradient porous materials by emulsion centrifugation. Chemical Communications, 2011, 47, 11754.	4.1	26
20	Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. Journal of Materials Chemistry A, 2015, 3, 15513-15522.	10.3	26
21	Surface etching of HKUST-1 promoted via supramolecular interactions for chromatography. Journal of Materials Chemistry A, 2014, 2, 13479-13485.	10.3	25
22	Formation of organic nanoparticles by solvent evaporation within porous polymeric materials. Chemical Communications, 2011, 47, 10001.	4.1	24
23	Synthesis of Nanospheres-on-Microsphere Silica with Tunable Shell Morphology and Mesoporosity for Improved HPLC. Langmuir, 2014, 30, 12190-12199.	3.5	19
24	Preparation of aligned porous silica monolithic capillary columns and their evaluation for HPLC. Analytical Methods, 2012, 4, 3942.	2.7	16
25	Nanofibrous microspheres via emulsion gelation and carbonization. Chemical Communications, 2015, 51, 16864-16867.	4.1	14
26	Porous silica spheres in macroporous structures and on nanofibres. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4351-4370.	3.4	12
27	Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering C, 2015, 49, 390-399.	7. 3	12
28	Silica Microspheres-in-Pores Composite Monoliths with Fluorescence and Potential for Water Remediation, Nanomaterials, 2021, 11, 2681.	4.1	1