Lauren M Huyett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11108889/publications.pdf

Version: 2024-02-01

567281 526287 1,172 29 15 27 citations h-index g-index papers 29 29 29 941 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clinical Evaluation of a Novel CGM-Informed Bolus Calculator with Automatic Glucose Trend Adjustment. Diabetes Technology and Therapeutics, 2022, 24, 18-25.	4.4	2
2	How introduction of automated insulin delivery systems may influence psychosocial outcomes in adults with type 1 diabetes: Findings from the first investigation with the Omnipod® 5 System. Diabetes Research and Clinical Practice, 2022, 190, 109998.	2.8	15
3	First Outpatient Evaluation of a Tubeless Automated Insulin Delivery System with Customizable Glucose Targets in Children and Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2021, 23, 410-424.	4.4	52
4	Improved glycemic control in 3,592 adults with type 2 diabetes mellitus initiating a tubeless insulin management system. Diabetes Research and Clinical Practice, 2021, 174, 108735.	2.8	9
5	Multicenter Trial of a Tubeless, On-Body Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric and Adult Participants With Type 1 Diabetes. Diabetes Care, 2021, 44, 1630-1640.	8.6	133
6	Declining Frequency of Acute Complications Associated with Tubeless Insulin Pump Use: Data from 2,911 Patients in the German/Austrian Diabetes Patienten Verlaufsdokumentation Registry. Diabetes Technology and Therapeutics, 2021, 23, 527-536.	4.4	10
7	Improved Glycemic Control Following Transition to Tubeless Insulin Pump Therapy in Adults With Type 1 Diabetes. Clinical Diabetes, 2021, 39, 72-79.	2.2	8
8	Safety and Performance of the Omnipod Hybrid Closed-Loop System in Adults, Adolescents, and Children with Type 1 Diabetes Over 5 Days Under Free-Living Conditions. Diabetes Technology and Therapeutics, 2020, 22, 174-184.	4.4	61
9	1296-P: Omnipod Personalized MPC Algorithm at Target Glucose of $110 \mathrm{mg/dl}$ Is Safe in Children Aged 2-12 Years without Increasing Risk of Hypoglycemia. Diabetes, 2020, 69, .	0.6	1
10	978-P: Omnipod Personalized MPC Algorithm at Target Glucose of 110mg/dl Is Safe in Adults and Adolescents without Increasing Risk of Hypoglycemia. Diabetes, 2020, 69, 978-P.	0.6	1
11	Glycemic Control and Factors Impacting Treatment Choice in Tubeless Insulin Pump Users: A Survey of the T1D Exchange Glu Online Community. Journal of Diabetes Science and Technology, 2019, 13, 1180-1181.	2.2	4
12	Performance of Omnipod Personalized Model Predictive Control Algorithm with Moderate Intensity Exercise in Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2019, 21, 265-272.	4.4	33
13	Novel Bluetooth-Enabled Tubeless Insulin Pump: Innovating Pump Therapy for Patients in the Digital Age. Journal of Diabetes Science and Technology, 2019, 13, 20-26.	2.2	34
14	215-OR: Safety and Performance of the Omnipod Hybrid Closed-Loop System in Young Children Aged 2-6 Years with Type 1 Diabetes. Diabetes, 2019, 68, 215-OR.	0.6	5
15	Real-Time Detection of Infusion Site Failures in a Closed-Loop Artificial Pancreas. Journal of Diabetes Science and Technology, 2018, 12, 599-607.	2.2	21
16	Glucose Sensor Dynamics and the Artificial Pancreas: The Impact of Lag on Sensor Measurement and Controller Performance. IEEE Control Systems, 2018, 38, 30-46.	0.8	39
17	Novel Bluetooth-Enabled Tubeless Insulin Pump: A User Experience Design Approach for a Connected Digital Diabetes Management Platform. Journal of Diabetes Science and Technology, 2018, 12, 1132-1142.	2.2	19
18	Performance of the Omnipod Personalized Model Predictive Control Algorithm with Meal Bolus Challenges in Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2018, 20, 585-595.	4.4	39

#	Article	IF	CITATIONS
19	Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive controlâ€based fullyâ€automated artificial pancreas in patients with type 1 diabetes: ⟨scp⟩a⟨ scp⟩ pilot study. Diabetes, Obesity and Metabolism, 2017, 19, 1698-1705.	4.4	72
20	Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control. Diabetes Technology and Therapeutics, 2017, 19, 331-339.	4.4	56
21	Application of Zone Model Predictive Control Artificial Pancreas During Extended Use of Infusion Set and Sensor: A Randomized Crossover-Controlled Home-Use Trial. Diabetes Care, 2017, 40, 1096-1102.	8.6	46
22	Cover Image, Volume 19, Issue 12. Diabetes, Obesity and Metabolism, 2017, 19, i.	4.4	0
23	Genomic analysis ofÂmethanogenic archaeaÂreveals a shift towards energy conservation. BMC Genomics, 2017, 18, 639.	2.8	41
24	Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism. Journal of Diabetes Science and Technology, 2016, 10, 1192-1194.	2.2	11
25	Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas. Industrial & Engineering Chemistry Research, 2015, 54, 10311-10321.	3.7	73
26	The impact of glucose sensing dynamics on the closed-loop artificial pancreas. , 2015, , .		4
27	Glucose Sensing in the Peritoneal Space Offers Faster Kinetics Than Sensing in the Subcutaneous Space. Diabetes, 2014, 63, 2498-2505.	0.6	43
28	Response to Comment on Doyle et al. Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care 2014;37:1191â€"1197. Diabetes Care, 2014, 37, e228-e228.	8.6	1
29	Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care, 2014, 37, 1191-1197.	8.6	339