Claudiu Aciu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11107818/publications.pdf

Version: 2024-02-01

		1163117	1199594	
16	160	8	12	
papers	citations	h-index	g-index	
17	17	17	156	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Recycling of plastic waste materials in the composition of ecological mortars. Procedia Manufacturing, 2018, 22, 274-279.	1.9	43
2	Recycling of Paper Waste in the Composition of Plastering Mortars. Procedia Technology, 2014, 12, 295-300.	1.1	24
3	Valorification of Volcanic Tuff in Constructions and Materials Manufacturing Industry. Procedia Technology, 2014, 12, 323-328.	1.1	16
4	Assessment of Recycling Potential of the Steel Mill Scale in the Composition of Mortars for Sustainable Manufacturing. Procedia Manufacturing, 2020, 46, 131-135.	1.9	13
5	Sustainable Uses of Zeolitic Tuff as Building Materials. Procedia Technology, 2014, 12, 542-547.	1.1	12
6	Research on the Chemical Characterization of the Oily Mill Scale for Natural Resources Conservation. Procedia Engineering, 2017, 181, 439-443.	1.2	12
7	Metallurgical Wastes as Resources for Sustainability of the Steel Industry. Sustainability, 2022, 14, 5488.	3.2	9
8	Innovative Plastering Mortars Based on Recycled Waste Glass. Procedia Technology, 2015, 19, 299-306.	1.1	8
9	Assessment of the Metallic Iron Content from Steelmaking Slags in Order to Conserve Natural Resources. Procedia Technology, 2014, 12, 615-620.	1.1	6
10	Assessment of recycling potential of the oily mill scale in the steelmaking industry. Procedia Manufacturing, 2018, 22, 228-232.	1.9	5
11	An Assessment of Pollution with Volatile Organic Compounds in the Electric Arc Furnaces. Procedia Technology, 2016, 22, 452-456.	1.1	4
12	The ECCOMAT Program for the Selection of Ecological Materials in Order to Ensure a Healthy Built Environment. Procedia Technology, 2015, 19, 490-497.	1.1	2
13	Reuse of the Steel Mill Scale for Sustainable Industrial Applications. Proceedings (mdpi), 2020, 63, 14.	0.2	2
14	Study Regarding the Micro Filler Effect of Sludge Resulting from Steel Pickling. Metals, 2021, 11, 361.	2.3	2
15	Advanced characterization of plastering mortars with glass waste additives. AIP Conference Proceedings, 2020, , .	0.4	1
16	Mineralogical Assessment Regarding the Sustainability of Mortars Exposed to Sodium Sulfate Attack. Procedia Technology, 2016, 22, 298-303.	1.1	0