M Makkee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11107162/publications.pdf

Version: 2024-02-01

94433 98798 4,571 75 37 67 citations h-index g-index papers 76 76 76 3629 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Base free transfer hydrogenation using a covalent triazine framework based catalyst. CrystEngComm, 2017, 19, 4166-4170.	2.6	15
2	How to achieve safe, high-quality clinical studies with non-Medicinal Investigational Products? A practical guideline by using intra-bronchial carbon nanoparticles as case study. Respiratory Research, 2016, 17, 102.	3 . 6	1
3	Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst. ChemSusChem, 2015, 8, 809-812.	6.8	97
4	Coke formation in the oxidative dehydrogenation of ethylbenzene to styrene by TEOM. Catalysis Science and Technology, 2014, 4, 3879-3890.	4.1	11
5	NO x Storage and High Temperature Soot Oxidation on Pt–Sr/ZrO2 Catalyst. Topics in Catalysis, 2009, 52, 2058-2062.	2.8	7
6	Application of NO storage/release materials based on alkali-earth oxides supported on Al2O3 for high-temperature diesel soot oxidation. Applied Catalysis B: Environmental, 2009, 88, 263-271.	20.2	61
7	Dispersion and Holdup in Multiphase Packed Bed Microreactors. Chemical Engineering and Technology, 2008, 31, 1130-1139.	1.5	37
8	Oxygen exchange mechanism between isotopic CO2 and Pt/CeO2. Applied Catalysis A: General, 2008, 342, 144-149.	4.3	44
9	On the mechanism of model diesel soot-O2 reaction catalysed by Pt-containing La3+-doped CeO2A TAP study with isotopic O2. Catalysis Today, 2007, 121, 237-245.	4.4	80
10	Potential rare-earth modified CeO2 catalysts for soot oxidation part II: Characterisation and catalytic activity with NO+O2. Applied Catalysis B: Environmental, 2007, 75, 201-209.	20.2	106
11	Potential rare-earth modified CeO2 catalysts for soot oxidation. Applied Catalysis B: Environmental, 2007, 75, 210-220.	20.2	100
12	Potential rare earth modified CeO2 catalysts for soot oxidation. Applied Catalysis B: Environmental, 2007, 75, 189-200.	20.2	304
13	Potential rare-earth modified CeO2 catalysts for soot oxidation. Topics in Catalysis, 2007, 42-43, 221-228.	2.8	32
14	Pt–Ce-soot generated from fuel-borne catalysts: soot oxidation mechanism. Topics in Catalysis, 2007, 42-43, 229-236.	2.8	13
15	Mechanism of deactivation of Au/Fe2O3 catalysts under water–gas shift conditions. Topics in Catalysis, 2007, 44, 209-221.	2.8	22
16	Optimal conditions in fluid catalytic cracking: A mechanistic approach. Applied Catalysis A: General, 2006, 297, 198-219.	4.3	61
17	Preparation and Pretreatment Temperature Influence on Iron Species Distribution and N2O Decomposition in Fe–ZSM-5. Catalysis Letters, 2006, 106, 183-193.	2.6	32
18	Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NOx. Catalysis Today, 2006, 114, 23-30.	4.4	73

#	Article	IF	Citations
19	Soot oxidation over NOx storage catalysts: Activity and deactivation. Catalysis Today, 2006, 114, 48-56.	4.4	59
20	DRIFTS study of the water–gas shift reaction over Au/Fe2O3. Journal of Catalysis, 2006, 243, 171-182.	6.2	106
21	The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mössbauer, FT-IR, and TAP reactor study. Journal of Catalysis, 2005, 230, 52-65.	6.2	193
22	Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. Journal of Catalysis, 2005, 230, 237-248.	6.2	379
23	The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts. Catalysis Letters, 2005, 100, 39-47.	2.6	64
24	Active oxygen from CeO2 and its role in catalysed soot oxidation. Catalysis Letters, 2005, 99, 203-205.	2.6	140
25	Preparation of Ceria-Zeolite Catalysts by Different Techniques and Its Effect on Selective Catalytic Reduction of NO with NH ₃ at High Space Velocities. Topics in Catalysis, 2004, 30/31, 115-121.	2.8	7
26	Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: performance assessment with a model for fractal-like agglomerates. Journal of Aerosol Science, 2004, 35, 633-655.	3.8	125
27	Title is missing!. Catalysis Letters, 2003, 86, 121-132.	2.6	83
28	Stability of catalytic foam diesel-soot filters based on CsO, MoO, and CsSO molten-salt catalysts. Applied Catalysis B: Environmental, 2003, 42, 337-347.	20.2	38
29	Cracking behavior of organic sulfur compounds under realistic FCC conditions in a microriser reactor. Applied Catalysis A: General, 2003, 238, 223-238.	4.3	25
30	Aromatic gas oil cracking under realistic FCC conditions in a microriser reactorâ [†] . Fuel, 2003, 82, 1559-1569.	6.4	56
31	Oil-soaked sintered impactors for the ELPI in diesel particulate measurements. Journal of Aerosol Science, 2003, 34, 635-640.	3.8	24
32	Bench-scale demonstration of an integrated deSoot–deNO system. Catalysis Today, 2002, 75, 459-464.	4.4	10
33	Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Applied Catalysis A: General, 2002, 223, 85-102.	4.3	171
34	Restriction for the ELPI in diesel particulate measurements. Journal of Aerosol Science, 2001, 32, 1117-1130.	3.8	45
35	Bench-Scale Demonstration of an Integrated deSoot-deNOx System. , 2001, , .		0
36	Molten Salts Are Promising Catalysts. How to Apply in Practice?. Topics in Catalysis, 2001, 16/17, 275-278.	2.8	39

#	Article	IF	Citations
37	Title is missing!. Topics in Catalysis, 2001, 16/17, 285-290.	2.8	4
38	Ultra Low Dosage of Platinum and Cerium Fuel Additives in Diesel Particulate Control. Topics in Catalysis, $2001, 16/17, 269-273$.	2.8	29
39	Performance of activated carbon-supported noble metal catalysts in the hydrogenolysis of CCl3F. Applied Catalysis B: Environmental, 2001, 29, 13-22.	20.2	14
40	Development of a Kinetic Model for FCC valid from Ultra-Short Residence Times. Studies in Surface Science and Catalysis, 2001, , 167-185.	1.5	6
41	Selective hydrogenolysis of CCl2F2 into CH2F2 over palladium on activated carbon. Catalysis Today, 2000, 59, 221-230.	4.4	18
42	Realistic contact for soot with an oxidation catalyst for laboratory studies. Applied Catalysis B: Environmental, 2000, 28, 253-257.	20.2	178
43	Synthesis and thermal stability of Ni, Cu, Co, and Mo catalysts based on high surface area silicon carbide. Applied Catalysis A: General, 1999, 184, 127-141.	4.3	41
44	The influence of NOx on the oxidation of metal activated diesel soot. Catalysis Today, 1999, 53, 623-630.	4.4	87
45	Fluid catalytic cracking (FCC): activity in the (milli)seconds range in an entrained flow reactor. Applied Catalysis A: General, 1999, 187, 3-12.	4.3	31
46	Applicability of supercritical water as a reaction medium for desulfurisation and demetallisation of gasoil. Fuel Processing Technology, 1999, 61, 265-277.	7.2	36
47	Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catalysis Today, 1999, 53, 613-621.	4.4	64
48	Measurement and modeling of the transient adsorption, desorption and diffusion processes in microporous materials. Chemical Engineering Science, 1999, 54, 4423-4436.	3.8	65
49	The potential of supported molten salts in the removal of soot from diesel exhaust gas. Applied Catalysis B: Environmental, 1999, 21, 51-61.	20.2	60
50	Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures. Applied Catalysis B: Environmental, 1999, 21, 35-49.	20.2	95
51	Development of a satisfactory palladium on activated carbon catalyst for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Journal of Molecular Catalysis A, 1998, 134, 191-200.	4.8	26
52	High surface area silicon carbide as catalyst support characterization and stability. Applied Catalysis A: General, 1998, 167, 321-330.	4.3	125
53	Coke formation in fluid catalytic cracking studied with the microriser. Catalysis Today, 1998, 46, 27-35.	4.4	40
54	Catalytic oxidation of model soot by chlorine based catalysts. Studies in Surface Science and Catalysis, 1998, 116, 645-654.	1.5	8

#	Article	IF	CITATIONS
55	Improved soot oxidation by fuel additives and molten salt catalysts. Studies in Surface Science and Catalysis, 1998, , 621-623.	1.5	3
56	Copper catalysis for particulate removal from diesel exhaust gas. Copper fuel additives in combination with copper coatings Studies in Surface Science and Catalysis, 1998, , 655-666.	1.5	1
57	Supported liquid phase catalysts: A new approach for catalytic oxidation in diesel exhaust particulate emission control. Studies in Surface Science and Catalysis, 1998, , 667-674.	1.5	11
58	Palladium black as model catalyst in the hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Applied Catalysis A: General, 1997, 155, 59-73.	4.3	82
59	Synthesis of high surface area silicon carbide by fluidized bed chemical vapour deposition. Applied Catalysis A: General, 1997, 162, 181-191.	4.3	24
60	Catalyst development for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Catalysis Today, 1997, 35, 163-170.	4.4	56
61	Nickel-Catalyzed Conversion of Activated Carbon Extrudates into High Surface Area Silicon Carbide by Reactive Chemical Vapour Deposition. Journal of Catalysis, 1997, 170, 311-324.	6.2	15
62	Bridging the gap between macroscopic and NMR diffusivities. Chemical Engineering Science, 1997, 52, 3401-3404.	3.8	55
63	Process development for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Studies in Surface Science and Catalysis, 1996, , 369-378.	1.5	24
64	Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Applied Catalysis B: Environmental, 1996, 8, 57-78.	20.2	336
65	Coating of activated carbon with silicon carbide by chemical vapour deposition. Carbon, 1996, 34, 567-579.	10.3	29
66	Short contact time experiments in a novel benchscale FCC riser reactor. Chemical Engineering Science, 1996, 51, 3039-3044.	3.8	16
67	Process for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Catalysis Today, 1996, 27, 257-264.	4.4	66
68	Palladium salts of heteropolyanions as catalysts in heterogeneous Wacker oxidation of 1-butene. Journal of Molecular Catalysis A, 1996, 107, 247-253.	4.8	16
69	Development of a Bench-Scale Fluid Catalytic Cracking Microriser. ACS Symposium Series, 1996, , 322-339.	0.5	6
70	Performance of \hat{I}^3 -alumina-supported Wacker catalysts in the oxidation of 1-butene. Applied Catalysis A: General, 1995, 131, 367-381.	4.3	19
71	Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Applied Catalysis B: Environmental, 1995, 6, 339-352.	20.2	131
72	Heteropolyanions as Redox Components in Heterogeneous Wacker Oxidation Catalysts. Journal of Catalysis, 1995, 154, 175-186.	6.2	44

M MAKKEE

#	Article	IF	CITATIONS
73	Novel application of catalysis in the synthesis of catalysts. Catalysis Letters, 1995, 34, 285-291.	2.6	13
74	Evaluation of Isothermal Chemical Vapor Infiltration with Langmuirâ€Hinshelwood Type Kinetics. Journal of the Electrochemical Society, 1994, 141, 282-290.	2.9	10
75	Diesel Particulate Control. Application of an Activated Particulate Trap in Combination with Fuel Additives at an Ultra Low Dose Rate. , 0, , .		27