Atsushi Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1110708/publications.pdf Version: 2024-02-01

Δτομομι Ειικίισα

#	Article	IF	CITATIONS
1	Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks. PLoS Genetics, 2012, 8, e1002440.	3.5	447
2	The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nature Communications, 2014, 5, 5464.	12.8	53
3	Identification of Inappropriately Reprogrammed Genes by Large-Scale Transcriptome Analysis of Individual Cloned Mouse Blastocysts. PLoS ONE, 2010, 5, e11274.	2.5	40
4	Efficient production of trophoblast lineage cells from human induced pluripotent stem cells. Laboratory Investigation, 2017, 97, 1188-1200.	3.7	21
5	Spatiotemporal dynamics of OCT4 protein localization during preimplantation development in mice. Reproduction, 2016, 152, 417-430.	2.6	19
6	Protocol for the production of viable bimaternal mouse embryos. Nature Protocols, 2008, 3, 197-209.	12.0	18
7	β-Catenin Functions Pleiotropically in Differentiation and Tumorigenesis in Mouse Embryo-Derived Stem Cells. PLoS ONE, 2013, 8, e63265.	2.5	15
8	De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells. Stem Cell Reports, 2021, 16, 2138-2148.	4.8	14
9	Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes. Scientific Reports, 2015, 5, 14101.	3.3	12
10	Generation of primitive neural stem cells from human fibroblasts using a defined set of factors. Biology Open, 2015, 4, 1595-1607.	1.2	12
11	Transcriptomic features of trophoblast lineage cells derived from human induced pluripotent stem cells treated with BMP 4. Placenta, 2020, 89, 20-32.	1.5	12
12	Deletion of IncRNA XACT does not change expression dosage of X-linked genes, but affects differentiation potential in hPSCs. Cell Reports, 2021, 35, 109222.	6.4	12
13	Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice. PLoS Genetics, 2016, 12, e1006375.	3.5	10
14	Chromatin condensation of <i>Xist</i> genomic loci during oogenesis in mice. Development (Cambridge), 2015, 142, 4049-55.	2.5	9
15	The hsa-miR-302 cluster controls ectodermal differentiation of human pluripotent stem cell via repression of DAZAP2. Regenerative Therapy, 2020, 15, 1-9.	3.0	8
16	The combination of dibenzazepine and a DOT1L inhibitor enables a stable maintenance of human naìve-state pluripotency in non-hypoxic conditions. Regenerative Therapy, 2020, 15, 161-168.	3.0	5
17	Manipulation of Xist Imprinting in Mouse Preimplantation Embryos. Methods in Molecular Biology, 2018, 1861, 47-53.	0.9	1
18	The serine 106 residue within the N-terminal transactivation domain is crucial for Oct4 function in mice. Zygote, 2017, 25, 197-204.	1.1	0

#	Article	IF	CITATIONS
19	Imprinted Xâ€chromosome inactivation impacts primitive endoderm differentiation in mouse blastocysts. FEBS Letters, 2020, 594, 913-923.	2.8	0