


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11107020/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | 3.6 Nano-Objects as Biomaterials: Immense Opportunities, Significant Challenges and the Important Use of Surface Analytical Methods. , 2017, , 86-107.                                                 |     | 2         |
| 2  | Characterization of natural titanomagnetites (Fe3â^'xTixO4) for studying heterogeneous electron<br>transfer to Tc(VII) in the Hanford subsurface. Geochimica Et Cosmochimica Acta, 2014, 128, 114-127. | 3.9 | 20        |
| 3  | XPS analysis of nanostructured materials and biological surfaces. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 415-432.                                                      | 1.7 | 177       |
| 4  | Separation, characterization and initial reaction studies of magnetite particles from Hanford sediments. Physics and Chemistry of the Earth, 2010, 35, 233-241.                                        | 2.9 | 12        |
| 5  | Characterization of Thin Films and Coatings. , 2010, , 749-864.                                                                                                                                        |     | 15        |
| 6  | Focused ion beam directed self-assembly (Cu2O on SrTiO3 ): FIB pit and Cu2O nanodot evolution.<br>Superlattices and Microstructures, 2008, 44, 677-685.                                                | 3.1 | 4         |
| 7  | Electrochemical effects of S accumulation on ion-implanted Alloy 22 in 1M NaCl solutions. Corrosion Science, 2007, 49, 2497-2511.                                                                      | 6.6 | 2         |
| 8  | Electron beam-induced thickening of the protective oxide layer around Fe nanoparticles.<br>Ultramicroscopy, 2007, 108, 43-51.                                                                          | 1.9 | 53        |
| 9  | Formation of epitaxial oxide nanodots on oxide substrate: Cu2O on SrTiO3(100). Surface Science, 2005, 589, 120-128.                                                                                    | 1.9 | 16        |
| 10 | Dissolution and growth of calcite in flowing water: estimation of back reaction rates via kinetic<br>Monte Carlo simulations. Journal of Crystal Growth, 2004, 262, 503-518.                           | 1.5 | 7         |
| 11 | Heteroepitaxial growth of a manganese carbonate secondary nano-phase on the (104) surface of calcite in solution. Surface Science, 2003, 524, 63-77.                                                   | 1.9 | 40        |
| 12 | Microscopic effects of carbonate, manganese, and strontium ions on calcite dissolution. Geochimica<br>Et Cosmochimica Acta, 2001, 65, 369-379.                                                         | 3.9 | 109       |
| 13 | The structure of Na2O–Al2O3–SiO2 glass: impact on sodium ion exchange in H2O and D2O. Journal of Non-Crystalline Solids, 2001, 296, 10-26.                                                             | 3.1 | 142       |
| 14 | Effects of titania surface structure on the nucleation and growth of Pt nanoclusters on rutile TiO2(110). Surface Science, 2001, 475, 159-170.                                                         | 1.9 | 51        |
| 15 | Atomic control of TiO2 (110) surface by oxygen plasma treatment. Surface Science, 2000, 459, L498-L502.                                                                                                | 1.9 | 32        |
| 16 | Interactions of liquid and vapor water with stoichiometric and defective TiO2(100) surfaces. Surface Science, 1999, 440, 60-68.                                                                        | 1.9 | 35        |
| 17 | Comparative SHG and XPS studies of interactions between defects and N2O on rutile TiO2(110) surfaces. Surface Science, 1997, 392, 1-7.                                                                 | 1.9 | 30        |
| 18 | Anisotropic dissolution at the CaCO3(101̄4)—water interface. Surface Science, 1997, 373, 275-287.                                                                                                      | 1.9 | 133       |

Baer

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Interactions of HCOOH with stoichiometric and defective TiO2(110) surfaces. Surface Science, 1997, 380, 352-364.                                                                                          | 1.9 | 90        |
| 20 | Structure of the cleaved CaCO3(101̄4) surface in an aqueous environment. Surface Science, 1996, 351, 172-182.                                                                                             | 1.9 | 114       |
| 21 | Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2 surfaces. Surface Science, 1995, 339, 114-124. | 1.9 | 140       |
| 22 | The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surface Science, 1995, 344, 237-250.                                                                                 | 1.9 | 228       |
| 23 | Creation of variable concentrations of defects on TiO2(110) using low-density electron beams.<br>Surface Science, 1994, 320, 295-306.                                                                     | 1.9 | 148       |
| 24 | Studies of the calcite cleavage surface for comparison with calculation. Applied Surface Science, 1993, 72, 295-300.                                                                                      | 6.1 | 60        |
| 25 | The interactions of Co, Mn and water with calcite surfaces. Surface Science, 1992, 276, 27-39.                                                                                                            | 1.9 | 48        |
| 26 | The effects of sulfur on the dissolution of nickel. Corrosion Science, 1989, 29, 1265-1274.                                                                                                               | 6.6 | 10        |
| 27 | Effect of excimer laser melting on the near surface chemistry and corrosion properties of aisi 304 stainless steel. Materials Letters, 1988, 6, 225-228.                                                  | 2.6 | 19        |
| 28 | Reaction of soda lime silicate glass in isotopically labelled water. Journal of Non-Crystalline Solids,<br>1986, 86, 369-380.                                                                             | 3.1 | 40        |
| 29 | Solving corrosion problems with surface analysis. Applications of Surface Science, 1985, 20, 382-396.                                                                                                     | 1.0 | 4         |
| 30 | Radiation induced phosphorus segregation in austenitic and ferritic alloys. Journal of Nuclear<br>Materials, 1984, 122, 196-200.                                                                          | 2.7 | 20        |
| 31 | Sub-critical intergranular crack growth of iron and nickel. Scripta Metallurgica, 1984, 18, 47-52.                                                                                                        | 1.2 | 4         |
| 32 | Effect of irradiation on phosphorus segregation. Journal of Nuclear Materials, 1983, 117, 218-223.                                                                                                        | 2.7 | 29        |
| 33 | Comparison of segregated phosphorus and sulfur effects on the fracture mode and ductility of iron tested at catholic potentials. Scripta Metallurgica, 1982, 16, 615-620.                                 | 1.2 | 19        |
| 34 | Protective and non-protective oxide formation on 304 stainless steel. Applications of Surface Science, 1981, 7, 69-82.                                                                                    | 1.0 | 35        |
| 35 | Radiation induced segregation in candidate fusion reactor alloys. Journal of Nuclear Materials, 1981, 104, 1379-1383.                                                                                     | 2.7 | 10        |
| 36 | Fracture mode transition of iron in hydrogen as a function of grain boundary sulfur. Scripta<br>Metallurgica, 1980, 14, 137-141.                                                                          | 1.2 | 33        |

|    | BAE                                                                                                                  | R   |           |
|----|----------------------------------------------------------------------------------------------------------------------|-----|-----------|
|    |                                                                                                                      |     |           |
| #  | Article                                                                                                              | IF  | CITATIONS |
| 37 | Sulfur induced fracture mode transition of nickel at cathodic potentials. Scripta Metallurgica, 1980, 14, 1233-1237. | 1.2 | 23        |