
Staffan Cullheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11106628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of Semaphorins, Neuropilins, VEGF, and Tenascins in Rat and Human Primary Sensory Neurons after a Dorsal Root Injury. Frontiers in Neurology, 2017, 8, 49.	2.4	20
2	Complement receptor 2 is up regulated in the spinal cord following nerve root injury and modulates the spinal cord response. Journal of Neuroinflammation, 2015, 12, 192.	7.2	9
3	Unbiased Expression Mapping Identifies a Link between the Complement and Cholinergic Systems in the Rat Central Nervous System. Journal of Immunology, 2014, 192, 1138-1153.	0.8	9
4	Neuronal myosin-X is upregulated after peripheral nerve injury and mediates laminin-induced growth of neurites. Molecular and Cellular Neurosciences, 2013, 56, 96-101.	2.2	13
5	Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurology Psychiatry and Brain Research, 2013, 19, 141-158.	2.0	17
6	The Extent of Synaptic Stripping of Motoneurons after Axotomy Is Not Correlated to Activation of Surrounding Glia or Downregulation of Postsynaptic Adhesion Molecules. PLoS ONE, 2013, 8, e59647.	2.5	17
7	Axonal Regeneration after Sciatic Nerve Lesion Is Delayed but Complete in GFAP- and Vimentin-Deficient Mice. PLoS ONE, 2013, 8, e79395.	2.5	33
8	Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Human Molecular Genetics, 2012, 21, 4827-4835.	2.9	149
9	Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3. Experimental Neurology, 2012, 237, 8-17.	4.1	50
10	Karolinska Institutet 200-Year Anniversary. Symposium on Traumatic Injuries in the Nervous System: Injuries to the Spinal Cord and Peripheral Nervous System – Injuries and Repair, Pain Problems, Lesions to Brachial Plexus. Frontiers in Neurology, 2011, 2, 29.	2.4	5
11	Evidence of hypothalamic degeneration in the anorectic <i>anx/anx</i> mouse. Glia, 2011, 59, 45-57.	4.9	24
12	Netrin G-2 ligand mRNA is downregulated in spinal motoneurons after sciatic nerve lesion. NeuroReport, 2010, 21, 782-785.	1.2	15
13	Classic Major Histocompatibility Complex Class I Molecules: New Actors at the Neuromuscular Junction. Neuroscientist, 2010, 16, 600-607.	3.5	18
14	Classical Major Histocompatibility Complex Class I Molecules in Motoneurons: New Actors at the Neuromuscular Junction. Journal of Neuroscience, 2009, 29, 13503-13515.	3.6	37
15	SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury. Journal of Comparative Neurology, 2009, 517, 670-682.	1.6	28
16	Altered expression of nectin-like adhesion molecules in the peripheral nerve after sciatic nerve transection. Neuroscience Letters, 2009, 449, 28-33.	2.1	11
17	MHC Class I Function at the Neuronal Synapse. , 2009, , 301-319.		1
18	MHC I expression and synaptic plasticity in different mice strains after axotomy. Synapse, 2008, 62, 137-148.	1.2	48

#	Article	IF	CITATIONS
19	MHC class I expression and synaptic plasticity after nerve lesion. Brain Research Reviews, 2008, 57, 265-269.	9.0	56
20	Integrin-laminin interactions controlling neurite outgrowth from adult DRG neurons in vitro. Molecular and Cellular Neurosciences, 2008, 39, 50-62.	2.2	90
21	Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proceedings of the United States of America, 2007, 104, 1325-1330.	7.1	516
22	Down-regulation of mRNAs for synaptic adhesion molecules neuroligin-2 and -3 and synCAM1 in spinal motoneurons after axotomy. Journal of Comparative Neurology, 2007, 503, 308-318.	1.6	19
23	The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Research Reviews, 2007, 55, 89-96.	9.0	129
24	Editorial – Intramembrane receptor–receptor interactions and volume transmission. Journal of Neural Transmission, 2007, 114, 1-2.	2.8	0
25	Expression of nectin-1, nectin-3, N-cadherin, and NCAM in spinal motoneurons after sciatic nerve transection. Experimental Neurology, 2006, 201, 461-469.	4.1	16
26	Integrin messenger RNAs in the red nucleus after axotomy and neurotrophic administration. NeuroReport, 2005, 16, 709-713.	1.2	12
27	Impeded Interaction between Schwann Cells and Axons in the Absence of Laminin Â4. Journal of Neuroscience, 2005, 25, 3692-3700.	3.6	84
28	Spinal Cord in Relation to the Peripheral Nervous System. , 2004, , 250-263.		2
29	A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17843-17848.	7.1	233
30	Dorsal root ganglion neurons up-regulate the expression of laminin-associated integrins after peripheral but not central axotomy. Journal of Comparative Neurology, 2004, 480, 162-169.	1.6	53
31	Induction of HIF1α but not HIF2α in motoneurons after ventral funiculus axotomy—implication in neuronal survival strategies. Experimental Neurology, 2004, 188, 20-32.	4.1	14
32	Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2. Journal of Comparative Neurology, 2003, 460, 476-486.	1.6	130
33	Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse, 2003, 50, 117-129.	1.2	231
34	Laminin chains in rat and human peripheral nerve: Distribution and regulation during development and after axonal injury. Journal of Comparative Neurology, 2002, 454, 284-293.	1.6	74
35	Chapter 24 Spinal cord motoneuron maintenance, injury and repair. Progress in Brain Research, 2000, 127, 501-514.	1.4	25
36	Ultrastructural evidence for a preferential elimination of glutamate-immunoreactive synaptic terminals from spinal motoneurons after intramedullary axotomy. Journal of Comparative Neurology, 2000, 425, 10-23.	1.6	94

#	Article	IF	CITATIONS
37	Differential regulation of trophic factor receptor mRNAs in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat. Journal of Comparative Neurology, 2000, 426, 587-601.	1.6	96
38	Regulation of laminin-associated integrin subunit mRNAs in rat spinal motoneurons during postnatal development and after axonal injury. Journal of Comparative Neurology, 2000, 428, 294-304.	1.6	43
39	Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. European Journal of Neuroscience, 2000, 12, 3675-3686.	2.6	97
40	Developmental and lesion-induced changes in the distribution of the glucose transporter Glut-1 in the central and peripheral nervous system. Experimental Brain Research, 2000, 131, 74-84.	1.5	24
41	Differential Expression of Tenascin-C, Tenascin-R, Tenascin/J1, and Tenascin-X in Spinal Cord Scar Tissue and in the Olfactory System. Experimental Neurology, 2000, 166, 350-362.	4.1	39
42	Multiple messengers in descending serotonin neurons: localization and functional implications. Journal of Chemical Neuroanatomy, 2000, 18, 75-86.	2.1	97
43	Differential expression of nerve terminal protein isoforms in VAChT-containing varicosities of the spinal cord ventral horn. Journal of Comparative Neurology, 1999, 411, 578-590.	1.6	59
44	Differential expression of nerve terminal protein isoforms in VAChT ontaining varicosities of the spinal cord ventral horn. Journal of Comparative Neurology, 1999, 411, 578-590.	1.6	2
45	Regulatory effects of trophic factors on expression and distribution of CGRP and GAP-43 in rat motoneurons. , 1998, 51, 1.		31
46	Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries. , 1998, 400, 57-72.		67
47	Distribution of glutamate-, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Experimental Brain Research, 1998, 118, 517-532.	1.5	97
48	Changes in the mRNA expression pattern, with special reference to calcitonin gene-related peptide, after axonal injuries in rat motoneurons depends on age and type of injury. Experimental Brain Research, 1998, 119, 191-204.	1.5	53
49	Expression of MHC Class I and β2-Microglobulin in Rat Spinal Motoneurons: Regulatory Influences by IFN-Gamma and Axotomy. Experimental Neurology, 1998, 150, 282-295.	4.1	81
50	Nerve Growth Factor Induces Process Formation in Meningeal Cells: Implications for Scar Formation in the Injured CNS. Journal of Neuroscience, 1998, 18, 5714-5722.	3.6	40
51	Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. , 1996, 365, 413-426.		88
52	Qualitative and quantitative analysis of glycine―and GABA―mmunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. Journal of Comparative Neurology, 1996, 365, 413-426.	1.6	1
53	Expression of NMDA Receptor mRNAs in Rat Motoneurons is Down-regulated after Axotomy. European Journal of Neuroscience, 1995, 7, 2101-2110.	2.6	82
54	Fibroblast Growth Factors Regulate Calcitonin Gene-related Peptide mRNA Expression in Rat Motoneurons after Lesion and in Culture. European Journal of Neuroscience, 1995, 7, 1739-1750.	2.6	65

#	Article	IF	CITATIONS
55	Extrasynaptic localization of taurine-like immunoreactivity in the lamprey spinal cord. Journal of Comparative Neurology, 1994, 347, 301-311.	1.6	12
56	trkC-like Immunoreactivity in the Primate Descending Serotoninergic System. European Journal of Neuroscience, 1994, 6, 230-236.	2.6	18
57	Adhesive/Repulsive Properties in the Injured Spinal Cord: Relation to Myelin Phagocytosis by Invading Macrophages. Experimental Neurology, 1994, 129, 183-193.	4.1	29
58	Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. Journal of Chemical Neuroanatomy, 1994, 7, 3-12.	2.1	35
59	Immunohistochemical evidence for coexistence of glycine and GABA in nerve terminals on cat spinal motoneurones. NeuroReport, 1994, 5, 889-892.	1.2	85
60	Increased trkB mRNA expression by axotomized motoneurones. NeuroReport, 1994, 5, 697-700.	1.2	64
61	Possible morphological substrates for GABA-mediated presynaptic inhibition in the lamprey spinal cord. Journal of Comparative Neurology, 1993, 328, 463-472.	1.6	25
62	Calcitonin Gene-Related Peptide in the Brain, Spinal Cord, and Some Peripheral Systems. Annals of the New York Academy of Sciences, 1992, 657, 119-134.	3.8	113
63	Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse, 1992, 11, 85-104.	1.2	29
64	On the Distribution of GAP-43 and its Relation to Serotonin in Adult Monkey and Cat Spinal Cord and Lower Brainstem. European Journal of Neuroscience, 1992, 4, 777-784.	2.6	15
65	Thyrotropin-releasing hormone (TRH)-like immunoreactivity in the grey monkey (Macaca fascicularis) spinal cord and medulla oblongata with special emphasis on the bulbospinal tract. Journal of Comparative Neurology, 1992, 322, 293-310.	1.6	14
66	Calcitonin gene-related peptide in monkey spinal cord and medulla oblongata. Brain Research, 1991, 558, 330-334.	2.2	20
67	Calcitonin Gene-related Peptide (CGRP)-like Immunoreactivity and CGRP mRNA in Rat Spinal Cord Motoneurons after Different Types of Lesions. European Journal of Neuroscience, 1991, 3, 737-757.	2.6	67
68	Distribution of125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: Biochemical, histochemical, and experimental studies at the light and electron microscopic level. Journal of Comparative Neurology, 1991, 308, 115-138.	1.6	47
69	Neurotensin-like Peptides in the CNS of Lampreys: Chromatographic Characterization and Immunohistochemical Localization with Reference to Aminergic Markers. European Journal of Neuroscience, 1990, 2, 1095-1109.	2.6	26
70	5-Hydroxytryptamine, substance P, and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: Immunohistochemical and chemical studies. Synapse, 1990, 6, 237-270.	1.2	79
71	5-Hydroxytryptamine immunoreactive varicosities in the lamprey spinal cord have no synaptic specializations - an ultrastructural study. Brain Research, 1990, 512, 201-209.	2.2	40

Serotonin and Coexisting Peptides in Cat and Lamprey Spinal Cord. , 1990, , 149-154.

1

#	ARTICLE	IF	CITATIONS
73	Postnatal Synaptic Reorganization of Cat Motoneurons. , 1989, , 51-58.		1
74	Postnatal development of cat hind limb motoneurons. I: Changes in length, branching structure, and spatial distribution of dendrites of cat triceps surae motoneurons. Journal of Comparative Neurology, 1988, 278, 69-87.	1.6	56
75	Postnatal development of cat hind limb motoneurons. II: In vivo morphology of dendritic growth cones and the maturation of dendrite morphology. Journal of Comparative Neurology, 1988, 278, 88-102.	1.6	47
76	Postnatal development of cat hind limb motoneurons. III: Changes in size of motoneurons supplying the triceps surae muscle. Journal of Comparative Neurology, 1988, 278, 103-120.	1.6	96
77	An ultrastructural study of the synaptology of Î ³ -motoneurones during the postnatal development in the cat. Developmental Brain Research, 1987, 37, 303-312.	1.7	18
78	The combined use of immunohistochemistry and intracellular staining with horseradish peroxidase for light and electron microscopic studies of transmitter-identified inputs to functionally characterized neurons. Brain Research, 1987, 419, 387-391.	2.2	16
79	Electron microscopic observations on recurrent axon collateral boutons of a triceps surae Î ³ -motoneuron in the cat. Neuroscience Letters, 1986, 63, 27-32.	2.1	5
80	Electron microscopic observations on the synaptology of cat sciatic Î ³ -motoneurons after intracellular staining with horseradish peroxidase. Neuroscience Letters, 1986, 70, 23-27.	2.1	21
81	Postnatal changes in the termination pattern of recurrent axon collaterals of triceps surae α-Motoneurons in the cat. Developmental Brain Research, 1985, 17, 63-73.	1.7	14
82	Evidence for a postnatal elimination of terminal arborizations and synaptic boutons of recurrent motor axon collaterals in the cat. Developmental Brain Research, 1982, 5, 234-237.	1.7	12
83	An ultrastructural study of the synaptic contacts of α-motoneurone axon collaterals. I. Contacts in lamina IX and with identified α-motoneurone dendrites in lamina VII. Brain Research, 1981, 207, 247-266.	2.2	75
84	An ultrastructural study of the synaptic contacts of $\hat{I}\pm 1$ -motoneuron axon collaterals. II. Contacts in lamina VII. Brain Research, 1981, 222, 29-41.	2.2	35
85	Observations on the morphology of intracellularly stained Î ³ -motoneurons in relation to their axon conduction velocity. Neuroscience Letters, 1979, 13, 47-50.	2.1	49
86	Relations between cell body size, axon diameter and axon conduction velocity of cat sciatic α-motoneurons stained with horseradish peroxidase. Neuroscience Letters, 1978, 8, 17-20.	2.1	146
87	Ultrastructural characteristics of a central cholinergic synapse in the cat. Brain Research, 1978, 148, 197-201.	2.2	18
88	Evidence for direct synaptic interconnections between cat spinal α-motoneurons via the recurrent axon collaterals: A morphological study using intracellular injection of horseradish peroxidase. Brain Research, 1977, 132, 1-10.	2.2	196
89	Combined light and electron microscopic tracing of neurons, including axons and synaptic terminals, after intracellular injection of horseradish peroxidase. Neuroscience Letters, 1976, 2, 307-313.	2.1	154