
Daniel Cw Tsang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11106157/publications.pdf Version: 2024-02-01

DANIEL CW TRANC

#	Article	IF	CITATIONS
1	Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 2016, 148, 276-291.	4.2	959
2	Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 2020, 134, 105046.	4.8	701
3	Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production, 2018, 174, 977-987.	4.6	513
4	Biochar technology in wastewater treatment: A critical review. Chemosphere, 2020, 252, 126539.	4.2	482
5	Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 2018, 619-620, 815-826.	3.9	429
6	Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 2017, 238, 716-732.	4.8	400
7	A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 2017, 246, 254-270.	4.8	398
8	Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environment International, 2019, 124, 521-532.	4.8	384
9	Microplastics as pollutants in agricultural soils. Environmental Pollution, 2020, 265, 114980.	3.7	359
10	Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials, 2021, 401, 123415.	6.5	325
11	A green biochar/iron oxide composite for methylene blue removal. Journal of Hazardous Materials, 2020, 384, 121286.	6.5	315
12	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	5.2	306
13	Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 2020, 716, 137116.	3.9	299
14	Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology, 2020, 312, 123613.	4.8	293
15	Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 2020, 186, 109547.	3.7	280
16	Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. Environmental Science & Technology, 2020, 54, 14797-14814.	4.6	273
17	Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource Technology, 2018, 265, 490-497.	4.8	267
18	Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. Journal of Hazardous Materials, 2020, 383, 121240.	6.5	266

#	Article	IF	CITATIONS
19	A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 2017, 246, 242-253.	4.8	263
20	Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International, 2019, 124, 320-328.	4.8	262
21	Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 2018, 616-617, 1242-1260.	3.9	254
22	Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research, 2021, 196, 117011.	5.3	253
23	A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production, 2021, 305, 127143.	4.6	252
24	Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. Bioresource Technology, 2019, 281, 457-468.	4.8	251
25	Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 2018, 615, 724-740.	3.9	250
26	Environmental transformations and ecological effects of iron-based nanoparticles. Environmental Pollution, 2018, 232, 10-30.	3.7	249
27	Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. Journal of Environmental Management, 2019, 241, 458-467.	3.8	249
28	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment International, 2019, 126, 336-345.	4.8	249
29	Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 2017, 174, 593-603.	4.2	245
30	Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresource Technology, 2019, 272, 570-581.	4.8	236
31	Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 2017, 178, 110-118.	4.2	231
32	High-performance materials for effective sorptive removal of formaldehyde in air. Journal of Hazardous Materials, 2019, 366, 452-465.	6.5	228
33	Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 2018, 625, 872-884.	3.9	225
34	Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, 2021, 411, 125132.	6.5	219
35	Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 2019, 375, 121983.	6.6	218
36	Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. Journal of Hazardous Materials, 2019, 365, 665-673.	6.5	216

#	Article	IF	CITATIONS
37	Effect of production temperature on lead removal mechanisms by rice straw biochars. Science of the Total Environment, 2019, 655, 751-758.	3.9	214
38	Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment International, 2018, 119, 1-19.	4.8	212
39	Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 2020, 119, 109582.	8.2	212
40	Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresource Technology, 2017, 245, 1184-1193.	4.8	209
41	Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 2018, 332, 100-108.	2.3	206
42	A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 2019, 227, 345-365.	4.2	204
43	Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 2017, 185, 214-222.	5.1	198
44	Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 2017, 328, 246-273.	6.6	196
45	Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews, 2019, 115, 109359.	8.2	191
46	Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. Science of the Total Environment, 2018, 625, 1567-1573.	3.9	190
47	Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. Journal of Hazardous Materials, 2019, 374, 412-419.	6.5	188
48	Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. Science of the Total Environment, 2020, 709, 136079.	3.9	187
49	Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 2020, 707, 136080.	3.9	184
50	Thallium pollution in China and removal technologies for waters: A review. Environment International, 2019, 126, 771-790.	4.8	180
51	Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production, 2020, 258, 120678.	4.6	180
52	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, 2019, 291, 121878.	4.8	177
53	Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. Journal of Cleaner Production, 2019, 222, 335-343.	4.6	177
54	Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chemical Engineering Journal, 2020, 385, 123842.	6.6	176

#	Article	IF	CITATIONS
55	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chemical Engineering Journal, 2018, 351, 418-427.	6.6	174
56	Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical Engineering Journal, 2021, 424, 130387.	6.6	167
57	Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Science of the Total Environment, 2018, 625, 1644-1658.	3.9	165
58	Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environment International, 2019, 122, 357-362.	4.8	164
59	Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental Research, 2019, 171, 356-364.	3.7	163
60	Corn straw-derived biochar impregnated with α-FeOOH nanorods for highly effective copper removal. Chemical Engineering Journal, 2018, 348, 191-201.	6.6	160
61	Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere, 2018, 190, 90-96.	4.2	158
62	Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chemical Engineering Journal, 2020, 401, 126136.	6.6	158
63	Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 2019, 365, 684-694.	6.5	156
64	Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Science of the Total Environment, 2016, 544, 670-676.	3.9	155
65	A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials, 2021, 414, 125378.	6.5	155
66	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. Journal of Hazardous Materials, 2019, 365, 695-706.	6.5	151
67	A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Science of the Total Environment, 2018, 616-617, 572-582.	3.9	146
68	Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria) Tj ETQq0 0 0 rgBT /Ove 273, 251-258.	erlock 10 4.8	Tf 50 227 Td (146
69	Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environmental Pollution, 2019, 247, 410-420.	3.7	145
70	The roles of biochar as green admixture for sediment-based construction products. Cement and Concrete Composites, 2019, 104, 103348.	4.6	144
71	Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere, 2017, 189, 301-308.	4.2	143
72	Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 2019, 672, 551-562.	3.9	143

#	Article	IF	CITATIONS
73	Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite. Journal of Hazardous Materials, 2021, 401, 123311.	6.5	142
74	Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 2019, 226, 540-549.	4.6	139
75	Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Science of the Total Environment, 2020, 698, 134112.	3.9	139
76	Sustainable soil use and management: An interdisciplinary and systematic approach. Science of the Total Environment, 2020, 729, 138961.	3.9	138
77	Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresource Technology, 2018, 252, 76-82.	4.8	132
78	Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. Journal of Hazardous Materials, 2020, 391, 121147.	6.5	132
79	Exploring the arsenic removal potential of various biosorbents from water. Environment International, 2019, 123, 567-579.	4.8	130
80	Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. Renewable and Sustainable Energy Reviews, 2020, 130, 109944.	8.2	128
81	Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environmental Pollution, 2018, 242, 1362-1370.	3.7	127
82	Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 2018, 153, 726-731.	4.5	126
83	Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere, 2018, 198, 450-459.	4.2	121
84	Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 2020, 717, 136894.	3.9	121
85	Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresource Technology, 2021, 341, 125811.	4.8	121
86	Optimizing the synthesis of Fe/Al (Hydr)oxides-Biochars to maximize phosphate removal via response surface model. Journal of Cleaner Production, 2019, 237, 117770.	4.6	119
87	Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. Waste Management, 2019, 83, 161-170.	3.7	118
88	Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Chemosphere, 2017, 182, 31-39.	4.2	117
89	Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. Journal of Cleaner Production, 2016, 137, 861-870.	4.6	116
90	Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. Chemosphere, 2016, 149, 263-271.	4.2	116

#	Article	IF	CITATIONS
91	Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresource Technology, 2018, 267, 242-248.	4.8	114
92	A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. Environment International, 2019, 125, 452-469.	4.8	112
93	Critical Impact of Nitrogen Vacancies in Nonradical Carbocatalysis on Nitrogen-Doped Graphitic Biochar. Environmental Science & Technology, 2021, 55, 7004-7014.	4.6	112
94	Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. Science of the Total Environment, 2018, 640-641, 704-713.	3.9	110
95	Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. Journal of Hazardous Materials, 2020, 390, 121649.	6.5	110
96	Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Science of the Total Environment, 2020, 720, 137584.	3.9	110
97	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production, 2018, 199, 69-76.	4.6	109
98	Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement and Concrete Composites, 2020, 106, 103489.	4.6	108
99	The role of zinc in metakaolin-based geopolymers. Cement and Concrete Research, 2020, 136, 106194.	4.6	108
100	Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere, 2017, 169, 89-98.	4.2	107
101	Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. Chemosphere, 2019, 235, 825-831.	4.2	107
102	Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. Renewable and Sustainable Energy Reviews, 2020, 124, 109785.	8.2	107
103	Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building Materials, 2016, 125, 316-325.	3.2	106
104	Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. Journal of Hazardous Materials, 2020, 400, 123317.	6.5	106
105	Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production, 2018, 187, 131-147.	4.6	105
106	Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environment International, 2021, 146, 106207.	4.8	105
107	Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere, 2017, 178, 301-308.	4.2	104
108	Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere, 2015, 122, 257-264.	4.2	102

#	Article	IF	CITATIONS
109	Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash. Chemical Engineering Journal, 2022, 430, 132972.	6.6	98
110	Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization. Science of the Total Environment, 2018, 631-632, 1321-1327.	3.9	97
111	Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. Science of the Total Environment, 2017, 599-600, 679-688.	3.9	96
112	Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants. Chemical Engineering Journal, 2020, 398, 125505.	6.6	96
113	Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. Chemosphere, 2017, 166, 489-496.	4.2	94
114	Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. Chemosphere, 2017, 176, 315-323.	4.2	93
115	Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. Science of the Total Environment, 2019, 664, 312-321.	3.9	92
116	Enhanced adsorption of arsenic onto alum sludge modified by calcination. Journal of Cleaner Production, 2018, 176, 54-62.	4.6	91
117	Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environment International, 2019, 133, 105247.	4.8	91
118	Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Science of the Total Environment, 2020, 739, 139845.	3.9	91
119	Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction. Journal of Hazardous Materials, 2019, 378, 120705.	6.5	90
120	Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation and Development, 2018, 29, 2162-2171.	1.8	89
121	A novel electrochemical modification combined with one-step pyrolysis for preparation of sustainable thorn-like iron-based biochar composites. Bioresource Technology, 2019, 274, 379-385.	4.8	89
122	Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash. Journal of Hazardous Materials, 2022, 423, 127025.	6.5	89
123	Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. Journal of Hazardous Materials, 2020, 387, 122005.	6.5	87
124	Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. Chemical Engineering Journal, 2020, 393, 124666.	6.6	85
125	Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. Journal of Hazardous Materials, 2021, 408, 124404.	6.5	85
126	Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry. Environmental Technology (United Kingdom), 2015, 36, 3094-3102.	1.2	84

#	Article	IF	CITATIONS
127	Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environmental Pollution, 2018, 232, 375-384.	3.7	83
128	Novel CuCo ₂ O ₄ Composite Spinel with a Meso-Macroporous Nanosheet Structure for Sulfate Radical Formation and Benzophenone-4 Degradation: Interface Reaction, Degradation Pathway, and DFT Calculation. ACS Applied Materials & Interfaces, 2020, 12, 20522-20535.	4.0	83
129	Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. Journal of Hazardous Materials, 2022, 425, 127906.	6.5	83
130	Mixture design and treatment methods for recycling contaminated sediment. Journal of Hazardous Materials, 2015, 283, 623-632.	6.5	82
131	Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). Construction and Building Materials, 2017, 147, 519-524.	3.2	82
132	Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. Journal of Hazardous Materials, 2022, 423, 127060.	6.5	82
133	Potentially toxic elements in solid waste streams: Fate and management approaches. Environmental Pollution, 2019, 253, 680-707.	3.7	79
134	Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: A comparison between raw and modified biochar. Science of the Total Environment, 2019, 697, 134115.	3.9	78
135	Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal. Bioresource Technology, 2019, 272, 415-420.	4.8	78
136	Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Construction and Building Materials, 2018, 159, 54-63.	3.2	77
137	Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. Science of the Total Environment, 2020, 706, 135725.	3.9	76
138	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Industrial & Engineering Chemistry Research, 2020, 59, 16957-16969.	1.8	76
139	A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 2021, 272, 115985.	3.7	76
140	On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement and Concrete Research, 2021, 144, 106421.	4.6	76
141	A novel type of controlled low strength material derived from alum sludge and green materials. Construction and Building Materials, 2018, 165, 792-800.	3.2	75
142	Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. Science of the Total Environment, 2018, 625, 147-154.	3.9	75
143	Waste-derived compost and biochar amendments for stormwater treatment in bioretention column: Co-transport of metals and colloids. Journal of Hazardous Materials, 2020, 383, 121243.	6.5	75
144	Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environmental Research, 2022, 207, 112179.	3.7	75

#	Article	IF	CITATIONS
145	Transforming wood waste into water-resistant magnesia-phosphate cement particleboard modified by alumina and red mud. Journal of Cleaner Production, 2017, 168, 452-462.	4.6	74
146	Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution, 2021, 268, 115549.	3.7	74
147	Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresource Technology, 2021, 338, 125555.	4.8	74
148	Biochar-augmented carbon-negative concrete. Chemical Engineering Journal, 2022, 431, 133946.	6.6	74
149	Thallium isotopic fractionation in industrial process of pyrite smelting and environmental implications. Journal of Hazardous Materials, 2020, 384, 121378.	6.5	73
150	Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy. Chemosphere, 2020, 242, 125172.	4.2	73
151	Thallium contamination, health risk assessment and source apportionment in common vegetables. Science of the Total Environment, 2020, 703, 135547.	3.9	73
152	Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing. Journal of Cleaner Production, 2017, 164, 1279-1288.	4.6	72
153	Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. Journal of Cleaner Production, 2021, 279, 123877.	4.6	72
154	Life-cycle assessment on food waste valorisation to value-added products. Journal of Cleaner Production, 2018, 199, 840-848.	4.6	71
155	Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. Environmental Pollution, 2020, 264, 114687.	3.7	71
156	Emergent thallium exposure from uranium mill tailings. Journal of Hazardous Materials, 2021, 407, 124402.	6.5	71
157	Effects of atmospheric ageing under different temperatures on surface properties of sludge-derived biochar and metal/metalloid stabilization. Chemosphere, 2017, 184, 176-184.	4.2	70
158	Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. Environment International, 2019, 128, 77-88.	4.8	70
159	Soil lead immobilization by biochars in short-term laboratory incubation studies. Environment International, 2019, 127, 190-198.	4.8	70
160	Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. Chemosphere, 2013, 93, 2839-2847.	4.2	68
161	Sludge-Derived Biochar for Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior. Journal of Environmental Quality, 2015, 44, 1119-1126.	1.0	67
162	Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation. Journal of Hazardous Materials, 2022, 430, 128479.	6.5	67

#	Article	IF	CITATIONS
163	Cadmium isotopes as tracers in environmental studies: A review. Science of the Total Environment, 2020, 736, 139585.	3.9	66
164	Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. Chemosphere, 2016, 159, 426-432.	4.2	65
165	Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Science of the Total Environment, 2018, 625, 987-993.	3.9	65
166	Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environment International, 2019, 131, 105015.	4.8	65
167	(Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environment International, 2020, 135, 105376.	4.8	63
168	Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. Journal of Hazardous Materials, 2020, 393, 122386.	6.5	63
169	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	3.2	63
170	Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. Journal of Hazardous Materials, 2021, 404, 124162.	6.5	63
171	Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe. Chemical Engineering Journal, 2021, 425, 131489.	6.6	63
172	Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes. Chemosphere, 2018, 205, 178-187.	4.2	62
173	Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance. Environmental Pollution, 2019, 254, 112891.	3.7	62
174	Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. Journal of Cleaner Production, 2019, 207, 391-399.	4.6	61
175	Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. Environmental Research, 2020, 183, 109156.	3.7	61
176	High-efficiency and low-carbon remediation of zinc contaminated sludge by magnesium oxysulfate cement. Journal of Hazardous Materials, 2021, 408, 124486.	6.5	61
177	High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide. Water Research, 2021, 190, 116711.	5.3	61
178	Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. Science of the Total Environment, 2018, 612, 1463-1472.	3.9	60
179	Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. Environmental Research, 2020, 183, 109152.	3.7	60
180	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320, 124412.	4.8	60

#	Article	IF	CITATIONS
181	Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. Construction and Building Materials, 2018, 173, 474-480.	3.2	59
182	A system dynamics approach to determine construction waste disposal charge in Hong Kong. Journal of Cleaner Production, 2019, 241, 118309.	4.6	59
183	Quantitative source tracking of heavy metals contained in urban road deposited sediments. Journal of Hazardous Materials, 2020, 393, 122362.	6.5	59
184	In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Science of the Total Environment, 2018, 619-620, 665-671.	3.9	58
185	Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin. Bioresource Technology, 2018, 270, 223-229.	4.8	58
186	Microwave-assisted production of CO2-activated biochar from sugarcane bagasse for electrochemical desalination. Journal of Hazardous Materials, 2020, 383, 121192.	6.5	58
187	Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area. Journal of Hazardous Materials, 2020, 388, 121756.	6.5	58
188	Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments. Science of the Total Environment, 2020, 739, 139957.	3.9	58
189	Evolution of redox activity of biochar during interaction with soil minerals: Effect on the electron donating and mediating capacities for Cr(VI) reduction. Journal of Hazardous Materials, 2021, 414, 125483.	6.5	57
190	Promoting food waste recycling in the commercial and industrial sector by extending the Theory of Planned Behaviour: A Hong Kong case study. Journal of Cleaner Production, 2018, 204, 1034-1043.	4.6	56
191	Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. Journal of Cleaner Production, 2021, 289, 125142.	4.6	56
192	Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. Science of the Total Environment, 2018, 615, 498-507.	3.9	55
193	Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: Metal/metalloid bioaccessibility, Microtox bioassay, and enzyme activities. Science of the Total Environment, 2017, 579, 1419-1426.	3.9	54
194	Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. Chemosphere, 2019, 233, 149-156.	4.2	54
195	Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. Environment International, 2020, 144, 106040.	4.8	54
196	Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal. Science of the Total Environment, 2020, 720, 137415.	3.9	54
197	Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Environmental Pollution, 2019, 246, 472-481.	3.7	53
198	Swine manure valorization for phosphorus and nitrogen recovery by catalytic–thermal hydrolysis and struvite crystallization. Science of the Total Environment, 2020, 729, 138999.	3.9	53

#	Article	IF	CITATIONS
199	Emerging Thallium Pollution in China and Source Tracing by Thallium Isotopes. Environmental Science & Technology, 2018, 52, 11977-11979.	4.6	52
200	Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils. Environment International, 2019, 126, 791-801.	4.8	52
201	Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant. Journal of Cleaner Production, 2021, 310, 127482.	4.6	52
202	Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. Science of the Total Environment, 2018, 631-632, 1486-1494.	3.9	51
203	Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 2021, 51, 1479-1532.	6.6	50
204	Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(VI) removal by engineered biochar. Chemical Engineering Journal, 2022, 428, 131967.	6.6	50
205	Simultaneous degradation of p-arsanilic acid and inorganic arsenic removal using M-rGO/PS Fenton-like system under neutral conditions. Journal of Hazardous Materials, 2020, 399, 123032.	6.5	49
206	Metal(loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 environments. Science of the Total Environment, 2018, 630, 1103-1114.	3.9	48
207	CO 2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. Journal of CO2 Utilization, 2017, 18, 107-116.	3.3	47
208	Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. Environmental Science and Pollution Research, 2018, 25, 34-42.	2.7	46
209	Sustainable impact of tartaric acid as electron shuttle on hierarchical iron-incorporated biochar. Chemical Engineering Journal, 2020, 395, 125138.	6.6	46
210	Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. Chemosphere, 2018, 196, 9-17.	4.2	45
211	Soil plastisphere: Exploration methods, influencing factors, and ecological insights. Journal of Hazardous Materials, 2022, 430, 128503.	6.5	45
212	Metal organic frameworks as potent treatment media for odorants and volatiles in air. Environmental Research, 2019, 168, 336-356.	3.7	44
213	Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. Chemosphere, 2021, 271, 129868.	4.2	44
214	Fast hydropyrolysis of biomass Conversion: A comparative review. Bioresource Technology, 2021, 342, 126067.	4.8	44
215	High contamination risks of thallium and associated metal(loid)s in fluvial sediments from a steel-making area and implications for environmental management. Journal of Environmental Management, 2019, 250, 109513.	3.8	43
216	Participation of soil active components in the reduction of Cr(VI) by biochar: Differing effects of iron mineral alone and its combination with organic acid. Journal of Hazardous Materials, 2020, 384, 121455.	6.5	43

#	Article	IF	CITATIONS
217	Prussian Blue Analogue-derived co/fe bimetallic nanoparticles immobilized on S/N-doped carbon sheet as a magnetic heterogeneous catalyst for activating peroxymonosulfate in water. Chemosphere, 2020, 244, 125444.	4.2	43
218	Adsorption of acetone and cyclohexane onto CO2 activated hydrochars. Chemosphere, 2020, 245, 125664.	4.2	43
219	Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash. Chemosphere, 2020, 249, 126115.	4.2	43
220	Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca2+-rich groundwater under anoxic conditions. Water Research, 2020, 183, 116106.	5.3	42
221	Redox-induced transformation of potentially toxic elements with organic carbon in soil. , 2022, 1, .		42
222	Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. Journal of Cleaner Production, 2018, 178, 572-579.	4.6	41
223	Investigation of cold bonded lightweight aggregates produced with incineration sewage sludge ash (ISSA) and cementitious waste. Journal of Cleaner Production, 2020, 251, 119709.	4.6	41
224	Stabilization of dissolvable biochar by soil minerals: Release reduction and organo-mineral complexes formation. Journal of Hazardous Materials, 2021, 412, 125213.	6.5	41
225	Polychlorinated biphenyls in agricultural soils from the Yangtze River Delta of China: Regional contamination characteristics, combined ecological effects and human health risks. Chemosphere, 2016, 163, 422-428.	4.2	40
226	Current progress in treatment techniques of triclosan from wastewater: A review. Science of the Total Environment, 2019, 696, 133990.	3.9	39
227	Health risks of metal(loid)s in maize (Zea mays L.) in an artisanal zinc smelting zone and source fingerprinting by lead isotope. Science of the Total Environment, 2020, 742, 140321.	3.9	39
228	Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. Chemical Engineering Journal, 2022, 429, 132292.	6.6	39
229	Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere, 2021, 273, 129692.	4.2	38
230	Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. Environment International, 2020, 145, 106139.	4.8	38
231	Critical insight and indication on particle size effects towards uranium release from uranium mill tailings: Geochemical and mineralogical aspects. Chemosphere, 2020, 250, 126315.	4.2	37
232	Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure. Journal of Hazardous Materials, 2021, 416, 125738.	6.5	37
233	Fabrication of spherical biochar by a two-step thermal process from waste potato peel. Science of the Total Environment, 2018, 626, 478-485.	3.9	35
234	Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochemical Engineering Journal, 2019, 149, 107249.	1.8	34

#	Article	IF	CITATIONS
235	Singlet oxygen mediated the selective removal of oxytetracycline in C/Fe3C/Fe0 system as compared to chloramphenicol. Environment International, 2020, 143, 105899.	4.8	34
236	Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing. Chemosphere, 2017, 167, 163-170.	4.2	33
237	Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. Environment International, 2020, 135, 105406.	4.8	33
238	Interactions between biochar and clay minerals in changing biochar carbon stability. Science of the Total Environment, 2022, 809, 151124.	3.9	33
239	Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. Environmental Pollution, 2017, 230, 927-935.	3.7	32
240	Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralised area. Chemosphere, 2020, 239, 124775.	4.2	32
241	Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions. Journal of Hazardous Materials, 2022, 421, 126647.	6.5	32
242	Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar. Science of the Total Environment, 2018, 625, 731-737.	3.9	31
243	Selective degradation and oxidation of hemicellulose in corncob to oligosaccharides: From biomass into masking agent for sustainable leather tanning. Journal of Hazardous Materials, 2021, 413, 125425.	6.5	31
244	Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. Environmental Research, 2022, 212, 113495.	3.7	31
245	Quantitative isotopic fingerprinting of thallium associated with potentially toxic elements (PTEs) in fluvial sediment cores with multiple anthropogenic sources. Environmental Pollution, 2020, 266, 115252.	3.7	30
246	Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation. Journal of Hazardous Materials, 2019, 367, 427-436.	6.5	29
247	Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. Journal of Environmental Management, 2019, 232, 254-263.	3.8	29
248	The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: Synergistic interplay of inherent wastewater components. Chemical Engineering Journal, 2020, 388, 124243.	6.6	29
249	Nitrate removal uncertainty in stormwater control measures: Is the design or climate a culprit?. Water Research, 2021, 190, 116781.	5.3	29
250	Cytotoxicity of stabilized/solidified municipal solid waste incineration fly ash. Journal of Hazardous Materials, 2022, 424, 127369.	6.5	29
251	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental–Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 1437-1446.	3.2	28
252	Persistent thallium contamination in river sediments, source apportionment and environmental implications. Ecotoxicology and Environmental Safety, 2020, 202, 110874.	2.9	28

#	Article	IF	CITATIONS
253	Effects and mechanisms of mineral amendment on thallium mobility in highly contaminated soils. Journal of Environmental Management, 2020, 262, 110251.	3.8	27
254	Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification. Environmental Science and Pollution Research, 2017, 24, 27822-27832.	2.7	26
255	Performance indicators for a holistic evaluation of catalyst-based degradation—A case study of selected pharmaceuticals and personal care products (PPCPs). Journal of Hazardous Materials, 2021, 402, 123460.	6.5	26
256	Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater. Environmental Technology (United Kingdom), 2013, 34, 3177-3182.	1.2	25
257	Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China. Environmental Pollution, 2017, 223, 449-456.	3.7	25
258	Spatial variation of sediment bacterial community in an acid mine drainage contaminated area and surrounding river basin. Journal of Environmental Management, 2019, 251, 109542.	3.8	25
259	Efficacy of green alternatives and carbon dioxide curing in reactive magnesia cement-bonded particleboards. Journal of Cleaner Production, 2020, 258, 120997.	4.6	25
260	Stoichiometric carbocatalysis via epoxide-like Câ^'Sâ^'O configuration on sulfur-doped biochar for environmental remediation. Journal of Hazardous Materials, 2022, 428, 128223.	6.5	25
261	A new DGT technique comprised in a hybrid sensor for the simultaneous measurement of ammonium, nitrate, phosphorus and dissolved oxygen. Science of the Total Environment, 2020, 725, 138447.	3.9	24
262	Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. Science of the Total Environment, 2018, 619-620, 1153-1162.	3.9	23
263	Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. Journal of Cleaner Production, 2019, 212, 420-427.	4.6	23
264	Customizing high-performance molten salt biochar from wood waste for CO2/N2 separation. Fuel Processing Technology, 2022, 234, 107319.	3.7	23
265	Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. Journal of Cleaner Production, 2021, 280, 124418.	4.6	22
266	Iron-crosslinked alginate derived Fe/C composites for atrazine removal from water. Science of the Total Environment, 2021, 756, 143866.	3.9	21
267	Valorization of biomass from plant microbial fuel cells into levulinic acid by using liquid/solid acids and green solvents. Journal of Cleaner Production, 2020, 260, 121097.	4.6	20
268	Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation. Journal of Cleaner Production, 2020, 268, 122300.	4.6	20
269	Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce. Science of the Total Environment, 2020, 714, 136721.	3.9	19
	Highly effective degradation of sodium dodecylbenzene sulphonate and synthetic greywater by		

Highly effective degradation of sodium dodecylbenzene sulphonate and synthetic greywater by Fenton-like reaction over zerovalent iron-based catalyst. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Over200k 10 1850 57 Td

#	Article	IF	CITATIONS
271	Contribution of pyrolytic gas medium to the fabrication of co-impregnated biochar. Journal of CO2 Utilization, 2018, 26, 476-486.	3.3	17
272	Silica Supported MgO as An Adsorbent for Precombustion CO ₂ Capture. ACS Applied Nano Materials, 2019, 2, 6565-6574.	2.4	17
273	Catalytic thermolysis of oak sawdust using Fe-based catalyst and CO2. Journal of CO2 Utilization, 2019, 32, 269-275.	3.3	17
274	Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens. Environmental Pollution, 2019, 255, 113169.	3.7	16
275	Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: A case study of di-(2-ethylhexyl) phthalate removal. Journal of Hazardous Materials, 2020, 384, 121321.	6.5	16
276	Scavenger-free and self-powered photocathodic sensing system for aqueous hydrogen peroxide monitoring by CuO/ZnO nanostructure. Chemical Engineering Science, 2020, 226, 115886.	1.9	16
277	Coupling carbon dioxide and magnetite for the enhanced thermolysis of polyvinyl chloride. Science of the Total Environment, 2019, 696, 133951.	3.9	15
278	Experimental and DFT investigation on N-functionalized biochars for enhanced removal of Cr(VI). Environmental Pollution, 2021, 291, 118244.	3.7	15
279	Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations. Environmental Pollution, 2022, 299, 118877.	3.7	15
280	Transformation of heavy metal fraction distribution in contaminated river sediment treated by chemical-enhanced washing. Journal of Soils and Sediments, 2017, 17, 1208-1218.	1.5	14
281	Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. Journal of Cleaner Production, 2020, 268, 122378.	4.6	14
282	Thallium geochemical fractionation and migration in Tl-As rich soils: The key controls. Science of the Total Environment, 2021, 784, 146995.	3.9	14
283	Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study. Environmental Pollution, 2020, 266, 115253.	3.7	13
284	Green remediation by using low-carbon cement-based stabilization/solidification approaches. , 2020, , 93-118.		11
285	Evaluating the environmental impact of contaminated sediment column stabilized by deep cement mixing. Chemosphere, 2020, 261, 127755.	4.2	10
286	Carbon dioxide assisted thermal decomposition of cattle excreta. Science of the Total Environment, 2018, 615, 70-77.	3.9	7
287	Biochar and sustainable development goals. , 2022, , 15-22.		6
288	A holistic understanding of cobalt cycling and limiting roles in the eutrophic Lake Taihu. Chemosphere, 2021, 277, 130234.	4.2	4

#	Article	IF	CITATIONS
289	Overview of hazardous waste treatment and stabilization/solidification technology. , 2022, , 1-14.		4
290	Carbon dioxide sequestration on composites based on waste wood. , 2018, , 431-450.		3
291	Biorefinery-assisted soil management for enhancing food security. Journal of Soils and Sediments, 2020, 20, 4007-4010.	1.5	3
292	Effects of modified biochar on As-contaminated water and soil: A recent update. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 107-136.	0.3	2
293	Biochar for green and sustainable stabilization/solidification. , 2022, , 65-73.		1
294	Sustainable carbohydrate-derived building materials. , 2020, , 285-304.		0
295	Future research directions for sustainable remediation. , 2022, , 555-564.		Ο
296	Evaluating comprehensive carbon emissions of solidification/stabilization technologies: a case study. , 2022, , 517-530.		0