Daniel Cw Tsang

List of Publications by Citations

Source: https://exaly.com/author-pdf/11106157/daniel-cw-tsang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,107 118 295 79 h-index g-index citations papers 296 24,482 10.3 7.74 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
295	Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. <i>Chemosphere</i> , 2016 , 148, 276-91	8.4	703
294	Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. <i>Environment International</i> , 2020 , 134, 105046	12.9	352
293	Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. <i>Journal of Cleaner Production</i> , 2018 , 174, 977-987	10.3	316
292	Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. <i>Science of the Total Environment</i> , 2018 , 619-620, 815-826	10.2	310
291	A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. <i>Bioresource Technology</i> , 2017 , 246, 254-270	11	300
290	Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. <i>Bioresource Technology</i> , 2017 , 238, 716-732	11	293
289	Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. <i>Environment International</i> , 2019 , 124, 521-532	12.9	287
288	Biochar technology in wastewater treatment: A critical review. <i>Chemosphere</i> , 2020 , 252, 126539	8.4	209
287	A critical review on sustainable biochar system through gasification: Energy and environmental applications. <i>Bioresource Technology</i> , 2017 , 246, 242-253	11	188
286	Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. <i>Chemosphere</i> , 2017 , 178, 110-118	8.4	185
285	Engineered/designer biochar for the removal of phosphate in water and wastewater. <i>Science of the Total Environment</i> , 2018 , 616-617, 1242-1260	10.2	185
284	Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. <i>Chemosphere</i> , 2017 , 174, 593-603	8.4	184
283	Environmental transformations and ecological effects of iron-based nanoparticles. <i>Environmental Pollution</i> , 2018 , 232, 10-30	9.3	184
282	Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. <i>Bioresource Technology</i> , 2018 , 265, 490-497	11	176
281	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. <i>Environment International</i> , 2019 , 126, 336-345	12.9	175
280	Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. <i>Science of the Total Environment</i> , 2020 , 716, 137116	10.2	168
279	A green biochar/iron oxide composite for methylene blue removal. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121286	12.8	165

(2019-2019)

278	Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis. <i>Environment International</i> , 2019 , 124, 320-328	12.9	157
277	Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. <i>Science of the Total Environment</i> , 2018 , 625, 872-884	10.2	156
276	Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. <i>Chemical Engineering Journal</i> , 2017 , 328, 246-273	14.7	156
275	Organic contamination and remediation in the agricultural soils of China: A critical review. <i>Science of the Total Environment</i> , 2018 , 615, 724-740	10.2	152
274	Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121240	12.8	149
273	Effect of production temperature on lead removal mechanisms by rice straw biochars. <i>Science of the Total Environment</i> , 2019 , 655, 751-758	10.2	148
272	Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. <i>Bioresource Technology</i> , 2017 , 245, 1184-1193	11	147
271	Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. <i>Journal of Environmental Management</i> , 2019 , 241, 458-467	7.9	145
270	Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. <i>Environment International</i> , 2018 , 119, 1-19	12.9	143
269	Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. <i>Bioresource Technology</i> , 2019 , 281, 457-468	11	142
268	Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. <i>Geoderma</i> , 2018 , 332, 100-108	6.7	142
267	Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. <i>Applied Energy</i> , 2017 , 185, 214-222	10.7	142
266	Lignin materials for adsorption: Current trend, perspectives and opportunities. <i>Bioresource Technology</i> , 2019 , 272, 570-581	11	141
265	Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. <i>Science of the Total Environment</i> , 2018 , 625, 1567-1573	10.2	139
264	High-performance materials for effective sorptive removal of formaldehyde in air. <i>Journal of Hazardous Materials</i> , 2019 , 366, 452-465	12.8	139
263	Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. <i>Chemical Engineering Journal</i> , 2019 , 375, 121983	14.7	138
262	Microplastics as pollutants in agricultural soils. Environmental Pollution, 2020, 265, 114980	9.3	137
261	Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. <i>Journal of Hazardous Materials</i> , 2019 , 365, 665-673	12.8	136

260	Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123415	12.8	129
259	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. <i>Chemical Engineering Journal</i> , 2018 , 351, 418-427	14.7	128
258	Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. <i>Bioresource Technology</i> , 2020 , 312, 123613	11	124
257	Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 115, 109359	16.2	116
256	A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. <i>Chemosphere</i> , 2019 , 227, 345-365	8.4	115
255	Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. <i>Journal of Hazardous Materials</i> , 2019 , 374, 412-419	12.8	114
254	A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. <i>Science of the Total Environment</i> , 2018 , 616-617, 572-582	10.2	114
253	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. <i>Bioresource Technology</i> , 2019 , 291, 121878	11	113
252	Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. <i>Science of the Total Environment</i> , 2020 , 707, 136080	10.2	112
251	Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. <i>Environment International</i> , 2019 , 122, 357-362	12.9	111
250	Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. <i>Science of the Total Environment</i> , 2018 , 625, 1644-1658	10.2	110
249	Corn straw-derived biochar impregnated with FeOOH nanorods for highly effective copper removal. <i>Chemical Engineering Journal</i> , 2018 , 348, 191-201	14.7	110
248	Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. <i>Chemosphere</i> , 2018 , 190, 90-96	8.4	110
247	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. <i>Journal of Hazardous Materials</i> , 2019 , 365, 695-706	12.8	110
246	Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. <i>Bioresource Technology</i> , 2019 , 273, 251-258	11	108
245	Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. <i>Science of the Total Environment</i> , 2016 , 544, 670-6	10.2	106
244	Thallium pollution in China and removal technologies for waters: A review. <i>Environment International</i> , 2019 , 126, 771-790	12.9	103
243	Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. <i>Journal of Cleaner Production</i> , 2019 , 222, 335-343	10.3	102

(2020-2019)

242	The roles of biochar as green admixture for sediment-based construction products. <i>Cement and Concrete Composites</i> , 2019 , 104, 103348	8.6	101
241	Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. <i>Chemosphere</i> , 2016 , 149, 263-71	8.4	100
240	Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. <i>Journal of Hazardous Materials</i> , 2019 , 365, 684-694	12.8	100
239	Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. <i>Environmental Research</i> , 2019 , 171, 356-364	7.9	99
238	Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. <i>Bioresource Technology</i> , 2018 , 252, 76-82	11	99
237	Biorenewable hydrogen production through biomass gasification: A review and future prospects. <i>Environmental Research</i> , 2020 , 186, 109547	7.9	99
236	Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. <i>Science of the Total Environment</i> , 2020 , 709, 136079	10.2	98
235	Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. <i>Chemosphere</i> , 2018 , 198, 450-459	8.4	97
234	A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. <i>Journal of Cleaner Production</i> , 2021 , 305, 127143	10.3	97
233	Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. <i>Environmental Pollution</i> , 2019 , 247, 410-420	9.3	97
232	Biochar as green additives in cement-based composites with carbon dioxide curing. <i>Journal of Cleaner Production</i> , 2020 , 258, 120678	10.3	93
231	Effects of calcium carbonate on pyrolysis of sewage sludge. <i>Energy</i> , 2018 , 153, 726-731	7.9	92
230	Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. <i>Environmental Science & Environmental & Envi</i>	10.3	92
229	Exploring the arsenic removal potential of various biosorbents from water. <i>Environment International</i> , 2019 , 123, 567-579	12.9	89
228	Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. <i>Chemosphere</i> , 2017 , 182, 31-39	8.4	87
227	Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. <i>Science of the Total Environment</i> , 2020 , 698, 134112	10.2	87
226	Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. <i>Journal of Cleaner Production</i> , 2019 , 226, 540-549	10.3	86
225	Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). <i>Chemical Engineering Journal</i> , 2020 , 385, 123842	14.7	86

224	Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. <i>Chemosphere</i> , 2015 , 122, 257-264	8.4	85
223	Antibiotics in the agricultural soils from the Yangtze River Delta, China. <i>Chemosphere</i> , 2017 , 189, 301-30	18 .4	85
222	Biochar-based adsorbents for carbon dioxide capture: A critical review. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 119, 109582	16.2	81
221	Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. <i>Chemosphere</i> , 2017 , 176, 315-323	8.4	80
220	Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. <i>Science of the Total Environment</i> , 2018 , 640-641, 704-713	10.2	80
219	Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. <i>Journal of Cleaner Production</i> , 2016 , 137, 861-870	10.3	80
218	Highly efficient removal of thallium in wastewater by MnFeO-biochar composite. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123311	12.8	80
217	Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. <i>Chemosphere</i> , 2017 , 166, 489-496	8.4	79
216	Customised fabrication of nitrogen-doped biochar for environmental and energy applications. <i>Chemical Engineering Journal</i> , 2020 , 401, 126136	14.7	78
215	Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. <i>Environmental Pollution</i> , 2018 , 242, 1362-1370	9.3	78
214	Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. <i>Science of the Total Environment</i> , 2017 , 599-600, 679-688	10.2	77
213	Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. <i>Science of the Total Environment</i> , 2019 , 672, 551-562	10.2	77
212	Biofiltration of hydrogen sulfide: Trends and challenges. <i>Journal of Cleaner Production</i> , 2018 , 187, 131-1	47.3	75
211	Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of HO and KSO in the presence of halide ions. <i>Science of the Total Environment</i> , 2019 , 664, 312-321	10.2	75
210	Optimizing the synthesis of Fe/Al (Hydr)oxides-Biochars to maximize phosphate removal via response surface model. <i>Journal of Cleaner Production</i> , 2019 , 237, 117770	10.3	74
209	Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. <i>Construction and Building Materials</i> , 2016 , 125, 316-325	6.7	74
208	Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. <i>Chemosphere</i> , 2017 , 169, 89-98	8.4	73
207	Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. Waste Management, 2019 , 83, 161-170	8.6	73

(2013-2018)

206	Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. <i>Bioresource Technology</i> , 2018 , 267, 242-248	11	72
205	Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO utilization. <i>Science of the Total Environment</i> , 2018 , 631-632, 1321-1327	10.2	71
204	A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. <i>Environment International</i> , 2019 , 125, 452-469	12.9	69
203	A novel electrochemical modification combined with one-step pyrolysis for preparation of sustainable thorn-like iron-based biochar composites. <i>Bioresource Technology</i> , 2019 , 274, 379-385	11	69
202	Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. <i>Chemosphere</i> , 2017 , 178, 301-308	8.4	67
201	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. <i>Journal of Cleaner Production</i> , 2018 , 199, 69-76	10.3	67
200	Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry. <i>Environmental Technology (United Kingdom)</i> , 2015 , 36, 3094-102	2.6	65
199	Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. <i>Cement and Concrete Composites</i> , 2020 , 106, 103489	8.6	65
198	Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. <i>Chemical Engineering Journal</i> , 2021 , 424, 130387	14.7	65
197	Mixture design and treatment methods for recycling contaminated sediment. <i>Journal of Hazardous Materials</i> , 2015 , 283, 623-32	12.8	64
196	Sustainable soil use and management: An interdisciplinary and systematic approach. <i>Science of the Total Environment</i> , 2020 , 729, 138961	10.2	64
195	Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. <i>Land Degradation and Development</i> , 2018 , 29, 2162-2171	4.4	64
194	Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. <i>Journal of Hazardous Materials</i> , 2020 , 390, 121649	12.8	63
193	Gasification biochar from biowaste (food waste and wood waste) for effective CO adsorption. Journal of Hazardous Materials, 2020 , 391, 121147	12.8	62
192	Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants. <i>Chemical Engineering Journal</i> , 2020 , 398, 125505	14.7	61
191	Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. <i>Environment International</i> , 2019 , 133, 105	5 247 9	60
190	Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 130, 109944	16.2	59
189	Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. <i>Chemosphere</i> , 2013 , 93, 2839-47	8.4	59

188	Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. <i>Environmental Pollution</i> , 2018 , 232, 375-384	9.3	58
187	Sludge-Derived Biochar for Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior. <i>Journal of Environmental Quality</i> , 2015 , 44, 1119-26	3.4	58
186	Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. <i>Science of the Total Environment</i> , 2018 , 625, 147-154	10.2	57
185	Enhanced adsorption of arsenic onto alum sludge modified by calcination. <i>Journal of Cleaner Production</i> , 2018 , 176, 54-62	10.3	57
184	Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. <i>Construction and Building Materials</i> , 2018 , 159, 54-63	6.7	57
183	Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal. <i>Bioresource Technology</i> , 2019 , 272, 415-420	11	56
182	Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120705	12.8	55
181	Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. Journal of Hazardous Materials, 2020 , 400, 123317	12.8	55
180	A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125378	12.8	55
179	Soil lead immobilization by biochars in short-term laboratory incubation studies. <i>Environment International</i> , 2019 , 127, 190-198	12.9	54
178	Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. <i>Science of the Total Environment</i> , 2020 , 720, 137584	10.2	54
177	Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. <i>Chemosphere</i> , 2019 , 235, 825-831	8.4	54
176	Transforming wood waste into water-resistant magnesia-phosphate cement particleboard modified by alumina and red mud. <i>Journal of Cleaner Production</i> , 2017 , 168, 452-462	10.3	54
175	Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. <i>Science of the Total Environment</i> , 2020 , 717, 136894	10.2	52
174	Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). <i>Construction and Building Materials</i> , 2017 , 147, 519-524	6.7	51
173	Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 124, 109785	16.2	51
172	Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. <i>Science of the Total Environment</i> , 2018 , 625, 987-993	10.2	51
171	Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. <i>Water Research</i> , 2021 , 196, 117011	12.5	51

(2020-2016)

170	Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. <i>Chemosphere</i> , 2016 , 159, 426-432	8.4	50
169	Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing. <i>Journal of Cleaner Production</i> , 2017 , 164, 1279-1288	10.3	50
168	Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. <i>Journal of Hazardous Materials</i> , 2020 , 387, 122005	12.8	49
167	Thallium isotopic fractionation in industrial process of pyrite smelting and environmental implications. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121378	12.8	49
166	Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: Metal/metalloid bioaccessibility, Microtox bioassay, and enzyme activities. <i>Science of the Total Environment</i> , 2017 , 579, 1419-1426	10.2	48
165	Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. <i>Environment International</i> , 2019 , 128, 77-88	12.9	48
164	Waste-derived compost and biochar amendments for stormwater treatment in bioretention column: Co-transport of metals and colloids. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121243	12.8	48
163	Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. <i>Environment International</i> , 2021 , 146, 106207	12.9	48
162	Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. <i>Science of the Total Environment</i> , 2018 , 615, 498-507	10.2	47
161	Life-cycle assessment on food waste valorisation to value-added products. <i>Journal of Cleaner Production</i> , 2018 , 199, 840-848	10.3	47
160	Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: A comparison between raw and modified biochar. <i>Science of the Total Environment</i> , 2019 , 697, 134115	10.2	46
159	Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy. <i>Chemosphere</i> , 2020 , 242, 125172	8.4	46
158	Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes. <i>Chemosphere</i> , 2018 , 205, 178-187	8.4	45
157	Effects of atmospheric ageing under different temperatures on surface properties of sludge-derived biochar and metal/metalloid stabilization. <i>Chemosphere</i> , 2017 , 184, 176-184	8.4	44
156	Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. <i>Science of the Total Environment</i> , 2018 , 612, 1463-1472	10.2	44
155	Potentially toxic elements in solid waste streams: Fate and management approaches. <i>Environmental Pollution</i> , 2019 , 253, 680-707	9.3	44
154	A novel type of controlled low strength material derived from alum sludge and green materials. <i>Construction and Building Materials</i> , 2018 , 165, 792-800	6.7	43
153	Thallium contamination, health risk assessment and source apportionment in common vegetables. <i>Science of the Total Environment</i> , 2020 , 703, 135547	10.2	43

152	Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. <i>Journal of Hazardous Materials</i> , 2021 , 411, 125132	12.8	42
151	Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. <i>Environmental Pollution</i> , 2020 , 264, 114687	9.3	41
150	The role of zinc in metakaolin-based geopolymers. Cement and Concrete Research, 2020, 136, 106194	10.3	41
149	Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. <i>Chemosphere</i> , 2018 , 196, 9-17	8.4	40
148	Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance. <i>Environmental Pollution</i> , 2019 , 254, 112891	9.3	40
147	Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. <i>Environment International</i> , 2019 , 131, 105015	12.9	39
146	Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. <i>Environmental Research</i> , 2020 , 183, 109156	7.9	38
145	Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area. <i>Journal of Hazardous Materials</i> , 2020 , 388, 121756	12.8	38
144	Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. <i>Journal of Cleaner Production</i> , 2019 , 207, 391-399	10.3	38
143	Technologies and perspectives for achieving carbon neutrality. <i>Innovation(China)</i> , 2021 , 2, 100180	17.8	37
142	Cadmium isotopes as tracers in environmental studies: A review. <i>Science of the Total Environment</i> , 2020 , 736, 139585	10.2	37
141	In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. <i>Science of the Total Environment</i> , 2018 , 619-620, 665-671	10.2	37
140	Promoting food waste recycling in the commercial and industrial sector by extending the Theory of Planned Behaviour: A Hong Kong case study. <i>Journal of Cleaner Production</i> , 2018 , 204, 1034-1043	10.3	37
139	Effect of biochars pyrolyzed in N and CO, and feedstock on microbial community in metal(loid)s contaminated soils. <i>Environment International</i> , 2019 , 126, 791-801	12.9	36
138	Novel CuCoO Composite Spinel with a Meso-Macroporous Nanosheet Structure for Sulfate Radical Formation and Benzophenone-4 Degradation: Interface Reaction, Degradation Pathway, and DFT Calculation. ACS Applied Materials & amp; Interfaces, 2020, 12, 20522-20535	9.5	36
137	Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. <i>Journal of Cleaner Production</i> , 2021 , 279, 123877	10.3	36
136	Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. <i>Chemical Engineering Journal</i> , 2020 , 393, 124666	14.7	35
135	Quantitative source tracking of heavy metals contained in urban road deposited sediments. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122362	12.8	35

(2021-2020)

134	Swine manure valorization for phosphorus and nitrogen recovery by catalytic-thermal hydrolysis and struvite crystallization. <i>Science of the Total Environment</i> , 2020 , 729, 138999	10.2	35
133	Metal(loid) immobilization in soils with biochars pyrolyzed in N and CO environments. <i>Science of the Total Environment</i> , 2018 , 630, 1103-1114	10.2	35
132	CO 2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. <i>Journal of CO2 Utilization</i> , 2017 , 18, 107-116	7.6	34
131	Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. <i>Chemosphere</i> , 2019 , 233, 149-156	8.4	34
130	Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. <i>Science of the Total Environment</i> , 2020 , 739, 139845	10.2	34
129	Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122386	12.8	34
128	Critical Impact of Nitrogen Vacancies in Nonradical Carbocatalysis on Nitrogen-Doped Graphitic Biochar. <i>Environmental Science & Environmental Science</i>	10.3	34
127	Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. <i>Science of the Total Environment</i> , 2018 , 631-632, 1486-1	4 ⁵ 4 ^{.2}	33
126	Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 34-42	5.1	33
125	(Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. <i>Environment International</i> , 2020 , 135, 105376	12.9	33
124	Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. <i>Science of the Total Environment</i> , 2020 , 706, 135725	10.2	33
123	Microwave-assisted production of CO-activated biochar from sugarcane bagasse for electrochemical desalination. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121192	12.8	33
122	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16957-16969	3.9	32
121	Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments. <i>Science of the Total Environment</i> , 2020 , 739, 139957	10.2	32
120	Fabrication of L-cysteine stabilized FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb removal. <i>Science of the Total Environment</i> , 2020 , 720, 137415	10.2	32
119	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6990-7001	8.3	31
118	Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. <i>Environmental Research</i> , 2020 , 183, 109152	7.9	31
117	Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124404	12.8	31

116	Simultaneous degradation of p-arsanilic acid and inorganic arsenic removal using M-rGO/PS Fenton-like system under neutral conditions. <i>Journal of Hazardous Materials</i> , 2020 , 399, 123032	12.8	30
115	Sustainable impact of tartaric acid as electron shuttle on hierarchical iron-incorporated biochar. <i>Chemical Engineering Journal</i> , 2020 , 395, 125138	14.7	30
114	A system dynamics approach to determine construction waste disposal charge in Hong Kong. Journal of Cleaner Production, 2019 , 241, 118309	10.3	30
113	Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin. <i>Bioresource Technology</i> , 2018 , 270, 223-229	11	30
112	Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. <i>Journal of Cleaner Production</i> , 2018 , 178, 572-579	10.3	29
111	Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing. <i>Chemosphere</i> , 2017 , 167, 163-170	8.4	29
110	Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. <i>Environmental Pollution</i> , 2019 , 246, 472-481	9.3	29
109	Metal organic frameworks as potent treatment media for odorants and volatiles in air. <i>Environmental Research</i> , 2019 , 168, 336-356	7.9	29
108	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. <i>Bioresource Technology</i> , 2021 , 320, 124412	11	29
107	Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. <i>Bioresource Technology</i> , 2021 , 341, 125811	11	29
106	Fabrication of spherical biochar by a two-step thermal process from waste potato peel. <i>Science of the Total Environment</i> , 2018 , 626, 478-485	10.2	28
105	Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. <i>Construction and Building Materials</i> , 2018 , 173, 474-480	6.7	28
104	Prussian Blue Analogue-derived co/fe bimetallic nanoparticles immobilized on S/N-doped carbon sheet as a magnetic heterogeneous catalyst for activating peroxymonosulfate in water. <i>Chemosphere</i> , 2020 , 244, 125444	8.4	28
103	High contamination risks of thallium and associated metal(loid)s in fluvial sediments from a steel-making area and implications for environmental management. <i>Journal of Environmental Management</i> , 2019 , 250, 109513	7.9	27
102	Adsorption of acetone and cyclohexane onto CO activated hydrochars. <i>Chemosphere</i> , 2020 , 245, 12566	48.4	27
101	Evolution of redox activity of biochar during interaction with soil minerals: Effect on the electron donating and mediating capacities for Cr(VI) reduction. <i>Journal of Hazardous Materials</i> , 2021 , 414, 1254	8 ^{12.8}	27
100	Emerging Thallium Pollution in China and Source Tracing by Thallium Isotopes. <i>Environmental Science & Environmental &</i>	10.3	27
99	Critical insight and indication on particle size effects towards uranium release from uranium mill tailings: Geochemical and mineralogical aspects. <i>Chemosphere</i> , 2020 , 250, 126315	8.4	26

98	Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124162	12.8	26
97	Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash. <i>Chemosphere</i> , 2020 , 249, 126115	8.4	25
96	Participation of soil active components in the reduction of Cr(VI) by biochar: Differing effects of iron mineral alone and its combination with organic acid. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121	455 ⁸	25
95	Polychlorinated biphenyls in agricultural soils from the Yangtze River Delta of China: Regional contamination characteristics, combined ecological effects and human health risks. <i>Chemosphere</i> , 2016 , 163, 422-428	8.4	25
94	A review on the valorisation of food waste as a nutrient source and soil amendment. <i>Environmental Pollution</i> , 2021 , 272, 115985	9.3	25
93	Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. <i>Journal of Cleaner Production</i> , 2021 , 289, 125142	10.3	25
92	Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. <i>Environmental Pollution</i> , 2021 , 268, 115549	9.3	25
91	Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar. <i>Science of the Total Environment</i> , 2018 , 625, 731-737	10.2	24
90	High-efficiency and low-carbon remediation of zinc contaminated sludge by magnesium oxysulfate cement. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124486	12.8	24
89	Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China. <i>Environmental Pollution</i> , 2017 , 223, 449-456	9.3	22
88	Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. <i>Environment International</i> , 2020 , 144, 106040	12.9	22
87	Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 1479-1532	11.1	22
86	High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide. <i>Water Research</i> , 2021 , 190, 116711	12.5	22
85	Emergent thallium exposure from uranium mill tailings. <i>Journal of Hazardous Materials</i> , 2021 , 407, 1244	02 .8	22
84	Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. <i>Biochemical Engineering Journal</i> , 2019 , 149, 107249	4.2	21
83	Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater. <i>Environmental Technology (United Kingdom)</i> , 2013 , 34, 3177-82	2.6	21
82	On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). <i>Cement and Concrete Research</i> , 2021 , 144, 106421	10.3	21
81	Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125738	12.8	20

80	Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. <i>Bioresource Technology</i> , 2021 , 338, 125555	11	20
79	Current progress in treatment techniques of triclosan from wastewater: A review. <i>Science of the Total Environment</i> , 2019 , 696, 133990	10.2	19
78	Quantitative isotopic fingerprinting of thallium associated with potentially toxic elements (PTEs) in fluvial sediment cores with multiple anthropogenic sources. <i>Environmental Pollution</i> , 2020 , 266, 115252	9.3	19
77	Efficacy of green alternatives and carbon dioxide curing in reactive magnesia cement-bonded particleboards. <i>Journal of Cleaner Production</i> , 2020 , 258, 120997	10.3	18
76	Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. <i>Environmental Pollution</i> , 2017 , 230, 927-935	9.3	18
75	Persistent thallium contamination in river sediments, source apportionment and environmental implications. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 202, 110874	7	18
74	Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation. <i>Journal of Hazardous Materials</i> , 2019 , 367, 427-436	12.8	18
73	Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca-rich groundwater under anoxic conditions. <i>Water Research</i> , 2020 , 183, 116106	12.5	17
72	Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. <i>Science of the Total Environment</i> , 2018 , 619-620, 1153-1162	10.2	17
71	Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. <i>Journal of Hazardous Materials</i> , 2021 , 425, 127906	12.8	17
70	Health risks of metal(loid)s in maize (Zea mays L.) in an artisanal zinc smelting zone and source fingerprinting by lead isotope. <i>Science of the Total Environment</i> , 2020 , 742, 140321	10.2	17
69	Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralised area. <i>Chemosphere</i> , 2020 , 239, 124775	8.4	17
68	Performance indicators for a holistic evaluation of catalyst-based degradation-A case study of selected pharmaceuticals and personal care products (PPCPs). <i>Journal of Hazardous Materials</i> , 2021 , 402, 123460	12.8	17
67	Effects and mechanisms of mineral amendment on thallium mobility in highly contaminated soils. Journal of Environmental Management, 2020 , 262, 110251	7.9	16
66	The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: Synergistic interplay of inherent wastewater components. <i>Chemical Engineering Journal</i> , 2020 , 388, 124	2 ¹ 43 ⁷	16
65	Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. <i>Chemosphere</i> , 2021 , 273, 129692	8.4	16
64	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental Computational Study. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1437-1446	8.3	16
63	Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. <i>Journal of Cleaner Production</i> , 2019 , 212, 420-427	10.3	16

62	Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant. <i>Journal of Cleaner Production</i> , 2021 , 310, 127482	10.3	16	
61	Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127025	12.8	16	
60	Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce. <i>Science of the Total Environment</i> , 2020 , 714, 136721	10.2	15	
59	Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. <i>Environment International</i> , 2020 , 145, 106139	12.9	15	
58	Investigation of cold bonded lightweight aggregates produced with incineration sewage sludge ash (ISSA) and cementitious waste. <i>Journal of Cleaner Production</i> , 2020 , 251, 119709	10.3	15	
57	Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. <i>Chemosphere</i> , 2021 , 271, 129868	8.4	15	
56	Highly effective degradation of sodium dodecylbenzene sulphonate and synthetic greywater by Fenton-like reaction over zerovalent iron-based catalyst. <i>Environmental Technology (United Kingdom)</i> , 2015 , 36, 1423-32	2.6	14	
55	Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: A case study of di-(2-ethylhexyl) phthalate removal. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121321	12.8	14	
54	Stabilization of dissolvable biochar by soil minerals: Release reduction and organo-mineral complexes formation. <i>Journal of Hazardous Materials</i> , 2021 , 412, 125213	12.8	14	
53	Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. <i>Journal of Environmental Management</i> , 2019 , 232, 254-263	7.9	14	
52	Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe. <i>Chemical Engineering Journal</i> , 2021 , 425, 131489	14.7	14	
51	Transformation of heavy metal fraction distribution in contaminated river sediment treated by chemical-enhanced washing. <i>Journal of Soils and Sediments</i> , 2017 , 17, 1208-1218	3.4	13	
50	Catalytic thermolysis of oak sawdust using Fe-based catalyst and CO2. <i>Journal of CO2 Utilization</i> , 2019 , 32, 269-275	7.6	13	
49	Valorization of biomass from plant microbial fuel cells into levulinic acid by using liquid/solid acids and green solvents. <i>Journal of Cleaner Production</i> , 2020 , 260, 121097	10.3	13	
48	Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash. <i>Chemical Engineering Journal</i> , 2022 , 430, 132972	14.7	13	
47	Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. <i>Environment International</i> , 2020 , 135, 105406	12.9	13	
46	Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127060	12.8	13	
45	Contribution of pyrolytic gas medium to the fabrication of co-impregnated biochar. <i>Journal of CO2 Utilization</i> , 2018 , 26, 476-486	7.6	12	

44	Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 27822-27832	5.1	12
43	Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. <i>Environmental Research</i> , 2021 , 207, 112179	7.9	12
42	Selective degradation and oxidation of hemicellulose in corncob to oligosaccharides: From biomass into masking agent for sustainable leather tanning. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125425	12.8	12
41	Coupling carbon dioxide and magnetite for the enhanced thermolysis of polyvinyl chloride. <i>Science of the Total Environment</i> , 2019 , 696, 133951	10.2	11
40	Effects of elevated CO on the phytoremediation efficiency of Noccaea caerulescens. <i>Environmental Pollution</i> , 2019 , 255, 113169	9.3	11
39	Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation. <i>Journal of Cleaner Production</i> , 2020 , 268, 122300	10.3	11
38	Singlet oxygen mediated the selective removal of oxytetracycline in C/FeC/Fe system as compared to chloramphenicol. <i>Environment International</i> , 2020 , 143, 105899	12.9	11
37	Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. <i>Journal of Cleaner Production</i> , 2021 , 280, 124418	10.3	11
36	Spatial variation of sediment bacterial community in an acid mine drainage contaminated area and surrounding river basin. <i>Journal of Environmental Management</i> , 2019 , 251, 109542	7.9	9
35	Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions. <i>Journal of Hazardous Materials</i> , 2022 , 421, 120	6647	9
34	A new DGT technique comprised in a hybrid sensor for the simultaneous measurement of ammonium, nitrate, phosphorus and dissolved oxygen. <i>Science of the Total Environment</i> , 2020 , 725, 138	447 ²	8
33	Biochar-augmented carbon-negative concrete. Chemical Engineering Journal, 2021, 431, 133946	14.7	8
32	Iron-crosslinked alginate derived Fe/C composites for atrazine removal from water. <i>Science of the Total Environment</i> , 2021 , 756, 143866	10.2	8
31	Nitrate removal uncertainty in stormwater control measures: Is the design or climate a culprit?. Water Research, 2021 , 190, 116781	12.5	8
30	Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(VI) removal by engineered biochar. <i>Chemical Engineering Journal</i> , 2022 , 428, 131967	14.7	8
29	Silica Supported MgO as An Adsorbent for Precombustion CO2 Capture. <i>ACS Applied Nano Materials</i> , 2019 , 2, 6565-6574	5.6	6
28	Green remediation by using low-carbon cement-based stabilization/solidification approaches 2020 , 93-	118	6
27	Scavenger-free and self-powered photocathodic sensing system for aqueous hydrogen peroxide monitoring by CuO/ZnO nanostructure. <i>Chemical Engineering Science</i> , 2020 , 226, 115886	4.4	6

26	Thallium geochemical fractionation and migration in Tl-As rich soils: The key controls. <i>Science of the Total Environment</i> , 2021 , 784, 146995	10.2	6	
25	Fast hydropyrolysis of biomass Conversion: A comparative review. <i>Bioresource Technology</i> , 2021 , 342, 126067	11	6	
24	Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. <i>Chemical Engineering Journal</i> , 2022 , 429, 132292	14.7	6	
23	Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. <i>Journal of Cleaner Production</i> , 2020 , 268, 122378	10.3	5	
22	Cytotoxicity of stabilized/solidified municipal solid waste incineration fly ash. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127369	12.8	5	
21	Carbon dioxide assisted thermal decomposition of cattle excreta. <i>Science of the Total Environment</i> , 2018 , 615, 70-77	10.2	4	
20	Evaluating the environmental impact of contaminated sediment column stabilized by deep cement mixing. <i>Chemosphere</i> , 2020 , 261, 127755	8.4	4	
19	Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation. <i>Journal of Hazardous Materials</i> , 2022 , 430, 128479	12.8	3	
18	Experimental and DFT investigation on N-functionalized biochars for enhanced removal of Cr(VI). <i>Environmental Pollution</i> , 2021 , 291, 118244	9.3	3	
17	Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations <i>Environmental Pollution</i> , 2022 , 299, 118877	9.3	2	
16	Stoichiometric carbocatalysis via epoxide-like C-S-O configuration on sulfur-doped biochar for environmental remediation <i>Journal of Hazardous Materials</i> , 2022 , 428, 128223	12.8	2	
15	Interactions between biochar and clay minerals in changing biochar carbon stability. <i>Science of the Total Environment</i> , 2021 , 809, 151124	10.2	2	
14	Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study. <i>Environmental Pollution</i> , 2020 , 266, 115253	9.3	2	
13	A holistic understanding of cobalt cycling and limiting roles in the eutrophic Lake Taihu. <i>Chemosphere</i> , 2021 , 277, 130234	8.4	2	
12	Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. <i>Environmental Research</i> , 2022 , 113495	7.9	2	
11	Carbon dioxide sequestration on composites based on waste wood 2018 , 431-450		1	
10	Biorefinery-assisted soil management for enhancing food security. <i>Journal of Soils and Sediments</i> , 2020 , 20, 4007-4010	3.4	1	
9	Overview of hazardous waste treatment and stabilization/solidification technology 2022 , 1-14		Ο	

8	Biochar for green and sustainable stabilization/solidification 2022 , 65-73		0	
7	Effects of modified biochar on As-contaminated water and soil: A recent update. <i>Advances in Chemical Pollution, Environmental Management and Protection</i> , 2021 , 7, 107-136	1.5	О	
6	Soil plastisphere: Exploration methods, influencing factors, and ecological insights. <i>Journal of Hazardous Materials</i> , 2022 , 430, 128503	12.8	O	
5	Biochar and sustainable development goals 2022 , 15-22		О	
4	Customizing high-performance molten salt biochar from wood waste for CO2/N2 separation. <i>Fuel Processing Technology</i> , 2022 , 234, 107319	7.2	0	
3	Sustainable carbohydrate-derived building materials 2020 , 285-304			
2	Future research directions for sustainable remediation 2022, 555-564			
1	Evaluating comprehensive carbon emissions of solidification/stabilization technologies: a case study 2022 , 517-530			