Keith L Black

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11105326/publications.pdf

Version: 2024-02-01

		117453	1	.55451
58	11,259	34		55
papers	citations	h-index		g-index
58	58	58		14777
30	30	30		14///
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
2	Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Molecular Cancer, 2006, 5, 67.	7.9	1,550
3	Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 2004, 23, 9392-9400.	2.6	747
4	Vaccination with Tumor Lysate-Pulsed Dendritic Cells Elicits Antigen-Specific, Cytotoxic T-Cells in Patients with Malignant Glioma. Cancer Research, 2004, 64, 4973-4979.	0.4	488
5	Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. Journal of Neurosurgery, 1991, 74, 441-446.	0.9	441
6	Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunology, Immunotherapy, 2013, 62, 125-135.	2.0	320
7	Vaccination Elicits Correlated Immune and Clinical Responses in Glioblastoma Multiforme Patients. Cancer Research, 2008, 68, 5955-5964.	0.4	266
8	Clinical Responsiveness of Glioblastoma Multiforme to Chemotherapy after Vaccination. Clinical Cancer Research, 2004, 10, 5316-5326.	3.2	248
9	The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Research, 2002, 62, 5657-63.	0.4	245
10	Treatment of intracranial gliomas with bone marrowâ€"derived dendritic cells pulsed with tumor antigens. Journal of Neurosurgery, 1999, 90, 1115-1124.	0.9	224
11	Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Research, 2002, 62, 7170-4.	0.4	201
12	Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nature Communications, 2019, 10, 3850.	5.8	199
13	Antigen-Specific T-Cell Response from Dendritic Cell Vaccination Using Cancer Stem-Like Cell-Associated Antigens. Stem Cells, 2009, 27, 1734-1740.	1.4	194
14	HER-2, gp100, and MAGE-1 Are Expressed in Human Glioblastoma and Recognized by Cytotoxic T Cells. Cancer Research, 2004, 64, 4980-4986.	0.4	177
15	Generation of Neural Progenitor Cells from Whole Adult Bone Marrow. Experimental Neurology, 2002, 178, 288-293.	2.0	133
16	Spheres Isolated from 9L Gliosarcoma Rat Cell Line Possess Chemoresistant and Aggressive Cancer Stem-Like Cells. Stem Cells, 2007, 25, 1645-1653.	1.4	132
17	Glioma Tropic Neural Stem Cells Consist of Astrocytic Precursors and Their Migratory Capacity Is Mediated by CXCR4. Neoplasia, 2004, 6, 287-293.	2.3	130
18	Interleukin-23–Expressing Bone Marrow–Derived Neural Stem-Like Cells Exhibit Antitumor Activity against Intracranial Glioma. Cancer Research, 2006, 66, 2630-2638.	0.4	119

#	Article	IF	CITATIONS
19	Hedgehog Signaling Regulates Brain Tumor-Initiating Cell Proliferation and Portends Shorter Survival for Patients with PTEN-Coexpressing Glioblastomas. Stem Cells, 2008, 26, 3018-3026.	1.4	100
20	Treatment of a glioblastoma patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class l–matched tumor peptides. Neurosurgical Focus, 2000, 9, 1-5.	1.0	96
21	Induction of Potent Antitumor Immunity by Intratumoral Injection of Interleukin 23–Transduced Dendritic Cells. Cancer Research, 2006, 66, 8887-8896.	0.4	92
22	Thymic CD8+ T Cell Production Strongly Influences Tumor Antigen Recognition and Age-Dependent Glioma Mortality. Journal of Immunology, 2003, 171, 4927-4933.	0.4	81
23	Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene, 2005, 24, 5226-5234.	2.6	69
24	Molecular and Functional Analysis of Tyrosinase-Related Protein (TRP)-2 as a Cytotoxic T Lymphocyte Target in Patients With Malignant Glioma. Journal of Immunotherapy, 2003, 26, 301-312.	1.2	66
25	Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia, 2004, 6, 287-93.	2.3	63
26	AIM-2: A Novel Tumor Antigen is Expressed and Presented by Human Glioma Cells. Journal of Immunotherapy, 2004, 27, 220-226.	1.2	62
27	Intratumoral Dendritic Cell Vaccination Elicits Potent Tumoricidal Immunity Against Malignant Glioma in Rats. Journal of Immunotherapy, 2003, 26, 107-116.	1.2	61
28	Blockade of a Laminin-411–Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma Growth through Tumor-Microenvironment Cross-talk. Cancer Research, 2019, 79, 1239-1251.	0.4	61
29	Pharmacological blood-brain barrier modification for selective drug delivery. Journal of Neuro-Oncology, 1995, 26, 125-132.	1.4	57
30	DCVax ^{$\hat{A}^{@}$} -Brain and DC vaccines in the treatment of GBM. Expert Opinion on Investigational Drugs, 2009, 18, 509-519.	1.9	51
31	Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma. ACS Nano, 2020, 14, 8392-8408.	7. 3	49
32	Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Review of Vaccines, 2006, 5, 233-247.	2.0	48
33	Recent Progress in Immunotherapy for Malignant Glioma: Treatment Strategies and Results from Clinical Trials. Cancer Control, 2004, 11, 192-207.	0.7	47
34	Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. Journal of Controlled Release, 2016, 244, 14-23.	4.8	40
35	A Phase I Study of Autologous Dendritic Cell Vaccine Pulsed with Allogeneic Stem-like Cell Line Lysate in Patients with Newly Diagnosed or Recurrent Glioblastoma. Clinical Cancer Research, 2022, 28, 689-696.	3.2	38
36	Glioma Stem Cell Research for the Development of Immunotherapy. Neurosurgery Clinics of North America, 2010, 21, 159-166.	0.8	35

#	Article	IF	CITATIONS
37	Multiple resections and survival of recurrent glioblastoma patients in the temozolomide era. Journal of Clinical Neuroscience, 2016, 24, 105-111.	0.8	35
38	A phase I trial of surgical resection with Gliadel Wafer placement followed by vaccination with dendritic cells pulsed with tumor lysate for patients with malignant glioma. Journal of Clinical Neuroscience, 2020, 74, 187-193.	0.8	35
39	T Cells Enhance Stem-Like Properties and Conditional Malignancy in Gliomas. PLoS ONE, 2010, 5, e10974.	1.1	33
40	Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model. Molecular Cancer, 2007, 6, 22.	7.9	31
41	Intrinsically de-sialylated CD103+ CD8 T cells mediate beneficial anti-glioma immune responses. Cancer Immunology, Immunotherapy, 2014, 63, 911-924.	2.0	31
42	ZEB1 regulates glioma stemness through LIF repression. Scientific Reports, 2017, 7, 69.	1.6	31
43	Vaccines for glioblastoma and high-grade glioma. Expert Review of Vaccines, 2011, 10, 875-886.	2.0	21
44	Chemokine CXC receptor 4–mediated glioma tumor tracking by bone marrow–derived neural progenitor/stem cells. Molecular Cancer Therapeutics, 2009, 8, 2746-2753.	1.9	19
45	Different effects of KCa and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models. Brain Research, 2008, 1227, 198-206.	1.1	18
46	Neural stem cells as delivery vehicles. Expert Opinion on Biological Therapy, 2003, 3, 759-770.	1.4	15
47	Dendritic cell-based immunotherapy for malignant gliomas. Expert Review of Neurotherapeutics, 2005, 5, 497-508.	1.4	15
48	Immunotherapy targeting glioma stem cells $\hat{a} \in \hat{a}$ insights and perspectives. Expert Opinion on Biological Therapy, 2012, 12, 165-178.	1.4	14
49	T cell immunity in patients with malignant glioma: recent progress in dendritic cell-based immunotherapeutic approaches. Frontiers in Bioscience - Landmark, 2005, 10, 2908.	3.0	9
50	ZEB1 Is a Transcription Factor That Is Prognostic and Predictive in Diffuse Gliomas. Frontiers in Neurology, 2019, 9, 1199.	1.1	9
51	Multifunctional Nanopolymers for Blood–Brain Barrier Delivery and Inhibition of Glioblastoma Growth through EGFR/EGFRvIII, c-Myc, and PD-1. Nanomaterials, 2021, 11, 2892.	1.9	9
52	Exploitation of adaptive evolution in glioma treatment. CNS Oncology, 2013, 2, 171-179.	1.2	8
53	Dendritic cell vaccines and immunity in glioma patients. Frontiers in Bioscience - Landmark, 2005, 10, 2861.	3.0	5
54	Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Advanced Drug Delivery Reviews, 2022, 181, 114033.	6.6	5

#	Article	IF	CITATIONS
55	Current Surgical Management of High-Grade Gliomas. , 2012, , 105-110.		3
56	Cancer Stem Cells in Glioblastoma. , 2012, , 113-120.		2
57	Use of neural stem cells as therapeutic vehicles for the treatment of malignant glioma. Expert Review of Neurotherapeutics, 2003, 3, 883-895.	1.4	1
58	Targeting Brain Cancer Stem Cells in the Clinic. , 2009, , 275-286.		1