Udo Buscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11105046/publications.pdf

Version: 2024-02-01

		516710	526287
29	1,006	16	27
papers	citations	h-index	g-index
29	29	29	748
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cooperative advertising models in supply chain management: A review. European Journal of Operational Research, 2014, 234, 1-14.	5.7	157
2	Vertical cooperative advertising and pricing decisions in a manufacturer–retailer supply chain: A game-theoretic approach. European Journal of Operational Research, 2012, 223, 473-482.	5.7	154
3	A comprehensive review of flowshop group scheduling literature. Computers and Operations Research, 2016, 70, 56-74.	4.0	88
4	A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 2019, 224, 421-434.	9.3	84
5	Solving the serial batching problem in job shop manufacturing systems. European Journal of Operational Research, 2012, 221, 14-26.	5.7	69
6	Single row layout models. European Journal of Operational Research, 2015, 245, 629-644.	5.7	69
7	Railway crew scheduling: Models, methods and applications. European Journal of Operational Research, 2020, 283, 405-425.	5.7	55
8	An integrated tabu search algorithm for the lot streaming problem in job shops. European Journal of Operational Research, 2009, 199, 385-399.	5.7	48
9	Energy aware scheduling in flexible flow shops with hybrid particle swarm optimization. Computers and Operations Research, 2021, 125, 105088.	4.0	38
10	Vertical cooperative advertising in a retailer duopoly. Computers and Industrial Engineering, 2014, 72, 247-254.	6.3	28
11	Flexible disassembly planning considering product conditions. International Journal of Production Research, 2013, 51, 6209-6228.	7.5	27
12	Solving Practical Railway Crew Scheduling Problems with Attendance Rates. Business and Information Systems Engineering, 2017, 59, 147-159.	6.1	25
13	Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices. Journal of Business Economics, 2020, 90, 1315-1343.	1.9	25
14	Valid inequalities for the arc flow formulation of the railway crew scheduling problem with attendance rates. Computers and Industrial Engineering, 2019, 127, 1143-1152.	6.3	23
15	Flow shop batching and scheduling with sequence-dependent setup times. Journal of Scheduling, 2014, 17, 353-370.	1.9	21
16	An iterative approach for the serial batching problem with parallel machines and job families. Annals of Operations Research, 2013, 206, 425-448.	4.1	16
17	Game theoretic analysis of pricing and vertical cooperative advertising of a retailer-duopoly with a common manufacturer. Central European Journal of Operations Research, 2016, 24, 127-147.	1.8	16
18	An efficient column generation approach for practical railway crew scheduling with attendance rates. European Journal of Operational Research, 2021, 293, 1113-1130.	5.7	14

#	Article	IF	CITATIONS
19	A simultaneous and iterative approach for parallel machine scheduling with sequence-dependent family setups. Journal of Scheduling, 2014, 17, 471-487.	1.9	13
20	Optimal price and quality decisions of a supply chain game considering imperfect quality items and market segmentation. Applied Mathematical Modelling, 2021, 91, 1227-1244.	4.2	11
21	A note on: an optimal batch size for an imperfect production system with quality assurance and rework. International Journal of Production Research, 2009, 47, 7063-7067.	7. 5	9
22	A note on "Quality investment and inspection policy in a supplier-manufacturer supply chain― European Journal of Operational Research, 2014, 234, 910-915.	5.7	7
23	A note on †Pricing and ordering decisions in a supply chain with imperfect quality items and inspection under buyback of defective items'. International Journal of Production Research, 2018, 56, 5272-5277.	7.5	4
24	MIP formulations and heuristics for solving parallel batching problems. Journal of Systems Science and Complexity, 2010, 23, 884-895.	2.8	2
25	Interorganizational Resource Sharing in Research and Development Alliances. Contributions To Management Science, 2018, , 111-131.	0.5	1
26	An Artificial Bee Colony Algorithm to Solve the Single Row Layout Problem with Clearances. Advances in Intelligent Systems and Computing, 2018, , 285-294.	0.6	1
27	Ramping constraint formulations under consideration of reserve activation in Unit Commitment Problems. Zeitschrift Fýr Energiewirtschaft, 2021, 45, 247-270.	0.2	1
28	Integrierte Planung von Produktions-, Nacharbeits- und Recyclingprozessen bei fehlerbehafteter Produktion., 2009,, 369-387.		0
29	Pricing and Ordering Decisions in a JELS-Model for Items with Imperfect Quality. Advances in Intelligent Systems and Computing, 2019, , 244-253.	0.6	0