Ihsan Efeoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11104489/publications.pdf

Version: 2024-02-01

759233 752698 38 480 12 20 h-index citations g-index papers 38 38 38 451 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of wear, corrosion and tribocorrosion properties of AZ91 Mg alloy coated by micro arc oxidation process in the different electrolyte solutions. Thin Solid Films, 2013, 528, 116-122.	1.8	54
2	Wear and adhesion resistance of duplex coatings deposited on Ti6Al4V alloy using MAO and CFUBMS. Surface and Coatings Technology, 2013, 214, 1-7.	4.8	53
3	Tribological characteristics of MoS2–Nb solid lubricant film in different tribo-test conditions. Surface and Coatings Technology, 2008, 203, 766-770.	4.8	51
4	Effect of crystallographic orientation on the friction and wear properties of MoxSy–Ti coatings by pulsed-dc in nitrogen and humid air. Wear, 2005, 258, 852-860.	3.1	25
5	Optimization of coating parameters for duplex treated AISI 5140 steel. Materials Science & Description of Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 141-148.	5.6	21
6	Evaluation of adhesion and fatigue of MoS2–Nb solid-lubricant films deposited by pulsed-dc magnetron sputtering. Surface and Coatings Technology, 2008, 202, 2344-2348.	4.8	19
7	MoS2-Ti composite films having (002) orientation and low Ti content. Crystallography Reports, 2010, 55, 1177-1182.	0.6	19
8	Adhesion and fatigue properties of Ti/TiB2/MoS2 graded-composite coatings deposited by closed-field unbalanced magnetron sputtering. Surface and Coatings Technology, 2013, 215, 266-271.	4.8	17
9	A comparative study of fatigue properties of TiVN and TiNbN thin films deposited on different substrates. Surface and Coatings Technology, 2017, 332, 296-303.	4.8	17
10	Investigation of the friction and wear properties of Ti/TiB 2 /MoS 2 graded-composite coatings deposited by CFUBMS under air and vacuum conditions. Surface and Coatings Technology, 2014, 260, 310-315.	4.8	15
11	The mechanical and tribological properties of Ti [Nb, V] N films on the Al-2024 alloy. Surface and Coatings Technology, 2017, 332, 312-318.	4.8	15
12	Mechanical and structural properties of AISI 8620 steel TiN coated, nitrided and TiN coated+nitrided. Materials Characterization, 2001, 46, 311-316.	4.4	12
13	The effect of TiC transient layer on a DLC-based functionally gradient coating prepared by closed field unbalanced magnetron sputtering plating system. Metals and Materials International, 2010, 16, 573-580.	3.4	12
14	The effect of nitrogen flow rate on TiBN coatings deposited on cold work tool steel. Journal of Adhesion Science and Technology, 2014, 28, 1140-1148.	2.6	12
15	The effect of plasma electrolytic oxidation process parameters on the tribocorrosion properties of TiO ₂ coatings. Journal of Adhesion Science and Technology, 2017, 31, 1361-1373.	2.6	12
16	Co-sputtered Mo:S:C:Ti:B based coating for tribological applications. Surface and Coatings Technology, 2005, 200, 1724-1730.	4.8	11
17	Adhesion and multipass scratch characterization of Ti:Ta-DLC composite coatings. Diamond and Related Materials, 2018, 83, 80-86.	3.9	11
18	A low temperature in-situ crystalline TiNi shape memory thin film deposited by magnetron sputtering. Surface and Coatings Technology, 2015, 284, 90-93.	4.8	10

#	Article	IF	CITATIONS
19	Fatigue and adhesion properties of martensite and austenite phases of TiNi shape memory thin films deposited by magnetron sputtering. Surface and Coatings Technology, 2016, 308, 174-181.	4.8	9
20	Determining the critical loads of V and Nb doped ternary TiN-based coatings deposited using CFUBMS on steels. Surface and Coatings Technology, 2017, 332, 168-173.	4.8	9
21	The adhesion and tribological properties of c-BN films deposited by high power impulse magnetron sputtering. Ceramics International, 2019, 45, 3000-3006.	4.8	8
22	The effect of TiO ₂ coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 699-704.	1.8	7
23	Structure and adhesion properties of TiNi/MoS2 coatings. Ceramics International, 2021, 47, 14033-14040.	4.8	7
24	Synergistic effect of bias and target currents for magnetron sputtered MoS2-Ti composite films. Materialpruefung/Materials Testing, 2016, 58, 471-474.	2.2	7
25	Deposition and Adhesion Characterization of Ti(BN:MoS2) Based Composite Thin Films Prepared by Closed-Field Unbalanced Magnetron Sputtering. Journal of Adhesion Science and Technology, 2011, 25, 1497-1505.	2.6	6
26	Microstructure, Mechanical, and Scratch Resistance Properties of TiAlCrNbN-Graded Composite Coating Deposited on AISI H13 Steel Substrate with Pulsed DC Closed Field Unbalanced Magnetron Sputtering Method. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2123-2131.	2.2	6
27	Analysis of Tribo-corrosion Properties of MAO/DLC Coatings Using a Duplex Process on Ti6Al4V Alloys. Journal of Bio- and Tribo-Corrosion, 2015, 1, 1.	2.6	6
28	Effects of voltage on the components of surface integrity of Al ₂ O ₃ ceramic coatings on AA2024 by plasma electrolytic oxidation. Journal of Adhesion Science and Technology, 2020, 34, 1971-1981.	2.6	6
29	CHARACTERIZATION OF TiB ₂ COATING ADHERENCE BY A MULTI-PASS SCRATCH TESTING. Surface Review and Letters, 2009, 16, 329-335.	1.1	5
30	STRESS-RELIEF SOLUTIONS FOR BRITTLE TiB₂ COATINGS. Surface Review and Letters, 2012, 19, 1250045.	1.1	5
31	Adhesion and tribological properties of TiTaBN coatings with a graded interlayer deposited by pulsed DC biased and continuous dc biased magnetron sputtering. Journal of Adhesion Science and Technology, 2015, 29, 2006-2019.	2.6	5
32	Investigating the structure, adhesion and tribological properties of Al and Zr-doped TiN coatings with various substrate bias voltage and working pressure. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1190-1202.	1.8	3
33	The wear behaviour of duplex treated AISI 5140 steel. Industrial Lubrication and Tribology, 2011, 63, 344-349.	1.3	2
34	Hardness, Adhesion, and Wear Performance of Duplex Treatment Coatings of Nitride/TiAlZrN with Different Zr Target Currents. Journal of Materials Engineering and Performance, 2021, 30, 638-651.	2.5	2
35	Effect of Target Voltage on Tribological and Adhesive Properties of c-BN Films Coated with HiPIMS. , 2019, , .		1
36	Wear Performance of Titanium and Niobium Added MoS2 Coatings Under Isobutane Exposure., 2009,,.		0

#	Article	lF	CITATIONS
37	Investigation of the Effect of Heat Treatments at Different Temperatures on the Crystal Structure of Titanium-Nickel Films. Journal of the Institute of Science and Technology, 0, , 526-534.	0.9	o
38	Tribological Properties of TiNi/MoS2 Functional Coatings. Journal of Materials Engineering and Performance, 2021, 30, 3632-3641.	2.5	0