Mario Lo Bello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11102804/publications.pdf

Version: 2024-02-01

109321 133252 3,508 60 35 59 citations h-index g-index papers 60 60 60 3217 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Three-dimensional structure of class π glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 à resolution. Journal of Molecular Biology, 1992, 227, 214-226.	4.2	273
2	The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. Journal of Molecular Biology, 1997, 274, 84-100.	4.2	172
3	Rational Design of an Organometallic Glutathione Transferase Inhibitor. Angewandte Chemie - International Edition, 2009, 48, 3854-3857.	13.8	169
4	The Three-Dimensional Structure of the Human Pi Class Glutathione Transferase P1-1 in Complex with the Inhibitor Ethacrynic Acid and Its Glutathione Conjugate,. Biochemistry, 1997, 36, 576-585.	2.5	125
5	Organometallic Ruthenium Inhibitors of Glutathioneâ€ <i>S</i> â€Transferase P1â€1 as Anticancer Drugs. ChemMedChem, 2007, 2, 1799-1806.	3.2	124
6	The ligandin (non-substrate) binding site of human pi class glutathione transferase is located in the electrophile binding site (H-site). Journal of Molecular Biology, 1999, 291, 913-926.	4.2	121
7	Interactions of \hat{l}_{\pm} , \hat{l}^2 -unsaturated aldehydes and ketones with human glutathione S-transferase P1-1. Chemico-Biological Interactions, 1997, 108, 67-78.	4.0	111
8	Nitrosylation of Human Glutathione Transferase P1-1 with Dinitrosyl Diglutathionyl Iron Complex in Vitro and in Vivo. Journal of Biological Chemistry, 2005, 280, 42172-42180.	3.4	109
9	Glutathione transferases and neurodegenerative diseases. Neurochemistry International, 2015, 82, 10-18.	3.8	104
10	Identification of â€~tissue' transglutaminase binding proteins in neural cells committed to apoptosis. FASEB Journal, 1999, 13, 355-364.	0.5	95
11	Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin. Chemico-Biological Interactions, 2003, 145, 139-148.	4.0	92
12	Human Glutathione Transferase P1-1 and Nitric Oxide Carriers. Journal of Biological Chemistry, 2001, 276, 42138-42145.	3.4	90
13	Monomerâ^'Dimer Equilibrium in Glutathione Transferases: A Critical Re-Examination. Biochemistry, 2009, 48, 10473-10482.	2.5	88
14	Site-directed Mutagenesis of Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 1995, 270, 1243-1248.	3.4	87
15	Structural Flexibility Modulates the Activity of Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 1996, 271, 16187-16192.	3.4	84
16	Crystallization of glutathione S-transferase from human placenta. Journal of Molecular Biology, 1990, 213, 221-222.	4.2	78
17	Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochemical Journal, 2011, 440, 175-183.	3.7	77
18	A structure-based mechanism of cisplatin resistance mediated by glutathione transferase P1-1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13943-13951.	7.1	76

#	Article	IF	CITATIONS
19	Studies of Glutathione Transferase P1â€1 Bound to a Platinum(IV)â€Based Anticancer Compound Reveal the Molecular Basis of Its Activation. Chemistry - A European Journal, 2011, 17, 7806-7816.	3.3	73
20	Site-directed Mutagenesis of Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 1995, 270, 1249-1253.	3.4	71
21	Catalytic Mechanism and Role of Hydroxyl Residues in the Active Site of Theta Class Glutathione S-Transferases. Journal of Biological Chemistry, 1997, 272, 29681-29686.	3.4	68
22	Multifunctional Role of Tyr 108 in the Catalytic Mechanism of Human Glutathione Transferase P1-1. Crystallographic and Kinetic Studies on the Y108F Mutant Enzymeâ€,‡. Biochemistry, 1997, 36, 6207-6217.	2.5	65
23	The Specific Interaction of Dinitrosyl-Diglutathionyl-Iron Complex, a Natural NO Carrier, with the Glutathione Transferase Superfamily. Journal of Biological Chemistry, 2003, 278, 42283-42293.	3.4	65
24	Glutathione Transferase Superfamily Behaves Like Storage Proteins for Dinitrosyl-Diglutathionyl-Iron Complex in Heterogeneous Systems. Journal of Biological Chemistry, 2003, 278, 42294-42299.	3.4	65
25	Proton Release upon Glutathione Binding to Glutathione Transferase P1-1: Kinetic Analysis of a Multistep Glutathione Binding Processâ€. Biochemistry, 1998, 37, 3028-3034.	2.5	58
26	Evidence for an Induced-Fit Mechanism Operating in Pi Class Glutathione Transferases,. Biochemistry, 1998, 37, 9912-9917.	2.5	56
27	Proton release on binding of glutathione to Alpha, Mu and Delta class glutathione transferases. Biochemical Journal, 1999, 344, 419-425.	3.7	54
28	The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Letters, 1997, 419, 32-36.	2.8	49
29	The Anti-cancer Drug Chlorambucil as a Substrate for the Human Polymorphic Enzyme Glutathione Transferase P1-1: Kinetic Properties and Crystallographic Characterisation of Allelic Variants. Journal of Molecular Biology, 2008, 380, 131-144.	4.2	49
30	Identification of a highly reactive sulphydryl group in human placental glutathione transferase by a site-directed fluorescent reagent. FEBS Letters, 1990, 263, 389-391.	2.8	48
31	Temperature Adaptation of Glutathione S-Transferase P1–1. Journal of Biological Chemistry, 1999, 274, 19276-19280.	3.4	44
32	GSTB1-1 from Proteus mirabilis. Journal of Biological Chemistry, 2002, 277, 18777-18784.	3.4	42
33	Lack of glutathione conjugation to adriamycin in human breast cancer MCF-7/DOX cells. Biochemical Pharmacology, 2000, 60, 1915-1923.	4.4	41
34	A new target for gold(I) compounds: Glutathione-S-transferase inhibition by auranofin. Journal of Inorganic Biochemistry, 2013, 119, 38-42.	3.5	39
35	Electrostatic Association of Glutathione Transferase to the Nuclear Membrane. Journal of Biological Chemistry, 2007, 282, 6372-6379.	3.4	38
36	Flexibility of Helix 2 in the Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 1998, 273, 23267-23273.	3.4	35

#	Article	IF	Citations
37	Glutathione transferase P1-1: self-preservation of an anti-cancer enzyme. Biochemical Journal, 2003, 376, 71-76.	3.7	35
38	The Impact of Nitric Oxide Toxicity on the Evolution of the Glutathione Transferase Superfamily. Journal of Biological Chemistry, 2013, 288, 24936-24947.	3.4	31
39	Mutations of gly to ala in human glutathione transferase P1-1 affect helix 2 (G-site) and induce positive cooperativity in the binding of glutathione 1 1Edited by R. Huber. Journal of Molecular Biology, 1998, 284, 1717-1725.	4.2	29
40	Organometallic Glutathione <i>S</i> -Transferase Inhibitors. Organometallics, 2017, 36, 3313-3321.	2.3	29
41	Solution Structure of Glutathione Bound to Human Glutathione Transferase P1-1: Comparison of NMR Measurements with the Crystal Structureâ€. Biochemistry, 1998, 37, 3020-3027.	2.5	28
42	Structural and Functional Consequences of Haloenol Lactone Inactivation of Murine and Human Glutathione S-Transferase. Biochemistry, 1998, 37, 6752-6759.	2.5	26
43	Cooperativity and Pseudo-cooperativity in the Glutathione S-Transferase from Plasmodium falciparum. Journal of Biological Chemistry, 2005, 280, 26121-26128.	3.4	26
44	Exploration of in vitro pro-drug activation and futile cycling by glutathione S-transferases: thiol ester hydrolysis and inhibitor maturation. Archives of Biochemistry and Biophysics, 2003, 414, 303-311.	3.0	24
45	Calorimetric and structural studies of the nitric oxide carrier S-nitrosoglutathione bound to human glutathione transferase P1-1. Protein Science, 2006, 15, 1093-1105.	7.6	24
46	Evolution of Negative Cooperativity in Glutathione Transferase Enabled Preservation of Enzyme Function. Journal of Biological Chemistry, 2016, 291, 26739-26749.	3.4	24
47	Human Glutathione Transferase T2-2 Discloses Some Evolutionary Strategies for Optimization of Substrate Binding to the Active Site of Glutathione Transferases. Journal of Biological Chemistry, 2001, 276, 5427-5431.	3.4	23
48	Shifting Substrate Specificity of Human Glutathione Transferase (from Class Pi to Class Alpha) by a Single Point Mutation. Biochemical and Biophysical Research Communications, 1998, 252, 184-189.	2.1	22
49	Interaction of glutathione transferase P1-1 with captan and captafol. Biochemical Pharmacology, 1996, 52, 43-48.	4.4	20
50	Thermodynamic Description of the Effect of the Mutation Y49F on Human Glutathione Transferase P1-1 in Binding with Glutathione and the Inhibitor S-Hexylglutathione. Journal of Biological Chemistry, 2003, 278, 46938-46948.	3.4	20
51	Glutathione transferase P1â€1 as an arsenic drugâ€sequestering enzyme. Protein Science, 2017, 26, 317-326.	7.6	20
52	Proton release on binding of glutathione to Alpha, Mu and Delta class glutathione transferases. Biochemical Journal, 1999, 344, 419.	3.7	19
53	Engineering a New C-terminal Tail in the H-site of Human Glutathione Transferase P1-1: Structural and Functional Consequences. Journal of Molecular Biology, 2003, 325, 111-122.	4.2	19
54	Influence of the Hâ€site residue 108 on human glutathione transferase P1â€1 ligand binding: Structureâ€thermodynamic relationships and thermal stability. Protein Science, 2009, 18, 2454-2470.	7.6	15

#	Article	IF	CITATIONS
55	Diuretic drug binding to human glutathione transferase P1â€1: potential role of Cysâ€101 revealed in the double mutant C47S/Y108V. Journal of Molecular Recognition, 2011, 24, 220-234.	2.1	13
56	Chemical modification of human placental glutathione transferase by pyridoxal 5′-phosphate. BBA - Proteins and Proteomics, 1992, 1121, 167-172.	2.1	11
57	Identifying and Characterizing Binding Sites on the Irreversible Inhibition of Human Glutathione Sâ€Transferase P1â€1 by ⟨i⟩S⟨/i⟩â€Thiocarbamoylation. ChemBioChem, 2012, 13, 1594-1604.	2.6	9
58	Monoclonal Antibodies Against Human Placental Glutathione Transferase (Class п). Hybridoma, 1991, 10, 89-94.	0.6	3
59	Valine 10 May Act as a Driver for Product Release from the Active Site of Human Glutathione Transferase P1-1â€,‡. Biochemistry, 2000, 39, 15961-15970.	2.5	3
60	Nitric Oxide Interacting with Glutathione Transferases., 2017,, 191-195.		O