
Yuen Yi C Tam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11101604/publications.pdf Version: 2024-02-01

ΥΠΕΝ ΥΓ<u></u></u> ΤΛΜ

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Hybrid Lipid Nanoparticles Containing Gold Nanoparticles and a Weak Base Drug. Langmuir, 2022, 38, 7858-7866.	1.6	3
2	Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. Journal of Controlled Release, 2022, 349, 174-183.	4.8	10
3	Protective Effect of Edaravone against Cationic Lipid-Mediated Oxidative Stress and Apoptosis. Biological and Pharmaceutical Bulletin, 2021, 44, 144-149.	0.6	14
4	Scalable Production of Lipid Nanoparticles Containing Amphotericin B. Langmuir, 2021, 37, 7312-7319.	1.6	7
5	Modular Lipid Nanoparticle Platform Technology for siRNA and Lipophilic Prodrug Delivery. Small, 2021, 17, e2103025.	5.2	29
6	Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach. Langmuir, 2021, 37, 1120-1128.	1.6	50
7	Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles. Nanoscale, 2020, 12, 23959-23966.	2.8	36
8	Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale, 2019, 11, 9023-9031.	2.8	85
9	On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale, 2019, 11, 21733-21739.	2.8	176
10	On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano, 2018, 12, 4787-4795.	7.3	319
11	Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. Journal of Controlled Release, 2018, 286, 46-54.	4.8	42
12	Lipid nanoparticle delivery of glucagon receptor siRNA improves glucose homeostasis in mouse models of diabetes. Molecular Metabolism, 2017, 6, 1161-1172.	3.0	20
13	Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1377-1387.	1.7	122
14	Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale, 2017, 9, 13600-13609.	2.8	46
15	A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo. Molecular Therapy - Nucleic Acids, 2016, 5, e348.	2.3	35
16	Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. Journal of Controlled Release, 2016, 235, 236-244.	4.8	204
17	The Niemann-Pick C1 Inhibitor NP3.47 Enhances Gene Silencing Potency of Lipid Nanoparticles Containing siRNA. Molecular Therapy, 2016, 24, 2100-2108.	3.7	38
18	Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. Journal of Physical Chemistry B, 2015, 119, 8698-8706.	1.2	203

Yuen Yi C Tam

#	Article	IF	CITATIONS
19	IGFBP2 Is Neither Sufficient nor Necessary for the Physiological Actions of Leptin on Glucose Homeostasis in Male ob/ob Mice. Endocrinology, 2014, 155, 716-725.	1.4	21
20	Lipid Nanoparticles for Short Interfering RNA Delivery. Advances in Genetics, 2014, 88, 71-110.	0.8	109
21	Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. Journal of Controlled Release, 2014, 196, 106-112.	4.8	108
22	Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 665-674.	1.7	34
23	Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 233-246.	1.7	67
24	Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles. Molecular Therapy - Nucleic Acids, 2013, 2, e139.	2.3	241
25	Advances in Lipid Nanoparticles for siRNA Delivery. Pharmaceutics, 2013, 5, 498-507.	2.0	169
26	Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer <i>in vivo</i> . International Journal of Cancer, 2012, 131, E781-90.	2.3	73
27	Influence of Cationic Lipid Composition on Gene Silencing Properties of Lipid Nanoparticle Formulations of siRNA in Antigen-Presenting Cells. Molecular Therapy, 2011, 19, 2186-2200.	3.7	153
28	Synthesis of a Labeled RGDâ^'Lipid, Its Incorporation into Liposomal Nanoparticles, and Their Trafficking in Cultured Endothelial Cells. Bioconjugate Chemistry, 2009, 20, 1404-1411.	1.8	38
29	Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae. Journal of Cell Biology, 2005, 169, 765-775.	2.3	99
30	Pex3p Initiates the Formation of a Preperoxisomal Compartment from a Subdomain of the Endoplasmic Reticulum in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2005, 280, 34933-34939.	1.6	149
31	Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. Journal of Cell Biology, 2004, 167, 1099-1112.	2.3	146
32	YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae. Journal of Cell Biology, 2003, 161, 321-332.	2.3	83
33	Pex11-related Proteins in Peroxisome Dynamics: A Role for the Novel Peroxin Pex27p in Controlling Peroxisome Size and Number inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2003, 14, 4089-4102.	0.9	97
34	Yarrowia lipolyticaCells Mutant for thePEX24Gene Encoding a Peroxisomal Membrane Peroxin Mislocalize Peroxisomal Proteins and Accumulate Membrane Structures Containing Both Peroxisomal Matrix and Membrane Proteins. Molecular Biology of the Cell, 2002, 13, 2681-2691.	0.9	36