
Joseph Eichberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11100940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of protein by a modified Lowry procedure in the presence of some commonly used detergents. Analytical Biochemistry, 1979, 96, 21-23.	2.4	114
2	Metabolism of Phospholipids in Peripheral Nerve from Rats with Chronic Streptozotocin-induced Diabetes Increased Turnover of Phosphatidylinositol-4,5-Bisphosphate. Journal of Neurochemistry, 1982, 39, 192-200.	3.9	100
3	Stimulation of 32Pi Incorporation into Phosphatidylinositol and Phosphatidylglycerol by Catecholamines and β-Adrenergic Receptor Blocking Agents in Rat Pineal Organ Cultures. Journal of Biological Chemistry, 1973, 248, 3615-3622.	3.4	89
4	Postsynaptic localization of the alpha receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland. Life Sciences, 1979, 24, 2179-2184.	4.3	79
5	1,2-Diacylglycerol Content and Its Arachidonyl-Containing Molecular Species Are Reduced in Sciatic Nerve from Streptozotocin-induced Diabetic Rats. Journal of Neurochemistry, 1990, 55, 1087-1090.	3.9	72
6	Protein kinase C changes in diabetes: Is the concept relevant to neuropathy?. International Review of Neurobiology, 2002, 50, 61-82.	2.0	62
7	The mechanism of modification by propranolol of the metabolism of phosphatidyl-CMP (CDP-diacylglycerol) and other lipids in the rat pineal gland. Lipids and Lipid Metabolism, 1979, 573, 90-106.	2.6	61
8	Concentrations and disappearance post mortem of polyphosphoinositides in developing rat brain. Lipids and Lipid Metabolism, 1967, 144, 415-422.	2.6	56
9	The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Lipids and Lipid Metabolism, 1973, 326, 210-223.	2.6	56
10	Myelin PO: new knowledge and new roles. Neurochemical Research, 2002, 27, 1331-1340.	3.3	55
11	Stimulation by local anesthetics of the metabolism of acidic phospholipids in the rat pineal gland. Biochemical and Biophysical Research Communications, 1974, 60, 1460-1467.	2.1	53
12	Interference by oxidized lipids in the determination of protein by the lowry procedure. Analytical Biochemistry, 1969, 30, 386-390.	2.4	51
13	Purification of Phosphatidylinositol Synthetase from Rat Brain by CDP-Diacylglycerol Affinity Chromatography and Properties of the Purified Enzyme. Journal of Neurochemistry, 1985, 44, 175-182.	3.9	44
14	Phosphorylation of myelin proteins: Recent advances. Neurochemical Research, 1996, 21, 527-535.	3.3	43
15	Distribution of Elements in Rat Peripheral Axons and Nerve Cell Bodies Determined by X-Ray Microprobe Analysis. Journal of Neurochemistry, 1988, 51, 764-775.	3.9	38
16	Alterations in retinal Na+, K+-ATPase in diabetes: streptozotocin-induced and Zucker diabetic fatty rats. Current Eye Research, 1993, 12, 1111-1121.	1.5	37
17	Relationship of α-adrenergic receptors in rat pineal gland to drug-induced stimulation of phospholipid metabolism. Nature, 1974, 252, 482-483.	27.8	36
18	Muscarinic Cholinergic Receptor-Mediated Phosphoinositide Metabolism in Peripheral Nerve. Journal of Neurochemistry, 1991, 56, 1905-1913.	3.9	34

JOSEPH EICHBERG

#	Article	IF	CITATIONS
19	Changes in Naâ€K ATPase and protein kinase C activities in peripheral nerve of acrylamideâ€ŧreated rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1994, 42, 331-342.	2.3	30
20	Depletion of Phospholipid Arachidonoyl-Containing Molecular Species in a Human Schwann Cell Line Grown in Elevated Glucose and Their Restoration by an Aldose Reductase Inhibitor. Journal of Neurochemistry, 2002, 71, 775-783.	3.9	30
21	Isolation and partial characterization of beef heart proteolipid. Lipids and Lipid Metabolism, 1969, 187, 533-545.	2.6	29
22	Decreased Incorporation of [3H]Inositol and [3H]Glycerol into Glycerolipids of Sciatic Nerve from the Streptozotocin Diabetic Rat. Journal of Neurochemistry, 1985, 45, 465-469.	3.9	29
23	The fatty acid composition of glycerolipids in nerve, brain, and other tissues of the streptozotocin diabetic rat. Neurochemical Research, 1985, 10, 1453-1465.	3.3	29
24	Polyphosphoinositide levels and biosynthesis in quaking mouse brain. Biochemical and Biophysical Research Communications, 1971, 43, 1072-1080.	2.1	25
25	Fluorometric analysis of polyunsaturated phosphatidylinositol and other phospholipids in the picomole range using high-performance thin-layer chromatography. Analytical Biochemistry, 1980, 106, 307-313.	2.4	25
26	Relationship of ATP Turnover, Polyphosphoinositide Metabolism, and Protein Phosphorylation in Sciatic Nerve and Derived Peripheral Myelin Subfractions from Normal and Streptozotocin Diabetic Rats. Journal of Neurochemistry, 1989, 52, 921-932.	3.9	24
27	Detergent solubilization and hydrophobic chromatography of rat brain phosphatidylinositol kinase. Neurochemical Research, 1981, 6, 1053-1065.	3.3	22
28	Effect of Hyperglycemia and Its Prevention by Insulin Treatment on the Incorporation of32P into Polyphosphoinositides and Other Phospholipids in Peripheral Nerve of the Streptozotocin Diabetic Rat. Journal of Neurochemistry, 1985, 45, 1692-1698.	3.9	22
29	Effect of Neurotransmitters and other Pharmacological Agents on the Metabolism of Phospholipids in Pineal-Gland Cultures and Cloned Neuronal and Glial Cells. Biochemical Society Transactions, 1973, 1, 352-359.	3.4	20
30	Acrylamide administration alters protein phosphorylation and phospholipid metabolism in rat sciatic nerve. Toxicology and Applied Pharmacology, 1990, 103, 502-511.	2.8	17
31	Molecular species composition of glycerophospholipids in rat sciatic nerve and its alteration in streptozotocin-induced diabetes. Lipids and Lipid Metabolism, 1993, 1168, 1-12.	2.6	16
32	Tyrosine phosphorylation of myelin protein Po. Journal of Neuroscience Research, 1996, 46, 531-539.	2.9	15
33	Altered arachidonic acid biosynthesis and antioxidant protection mechanisms in Schwann cells grown in elevated glucose. Journal of Neurochemistry, 2002, 81, 1253-1262.	3.9	15
34	Decreased <i>myo</i> â€Inositol Uptake Is Associated with Reduced Bradykinin‣timulated Phosphatidylinositol Synthesis and Diacylglycerol Content in Cultured Neuroblastoma Cells Exposed to Lâ€Fucose. Journal of Neurochemistry, 1994, 62, 147-158.	3.9	15
35	Hexanedione effects on protein phosphorylation in rat peripheral nerve. Brain Research, 1989, 491, 366-370.	2.2	14
36	PO phosphorylation in nerves from normal and diabetic rats: Role of protein kinase C and turnover of phosphate groups. Neurochemical Research, 1994, 19, 1023-1031.	3.3	14

JOSEPH EICHBERG

#	Article	IF	CITATIONS
37	Phosphoinositide metabolism, Na,K-ATPase and protein kinase C are altered in peripheral nerve from Zucker diabetic fatty rats (ZDF/Gmi-fa). Neuroscience Research Communications, 1997, 20, 21-30.	0.2	13
38	Myelin protein zero: Mutations in the cytoplasmic domain interfere with its cellular trafficking. Journal of Neuroscience Research, 2006, 83, 957-964.	2.9	13
39	Polyphosphoinositides in normal and neoplastic rodent astrocytes. Biochemical and Biophysical Research Communications, 1971, 45, 43-50.	2.1	12
40	Insulin Reverses Enhanced Incorporation of32P into Polyphosphoinositides in Peripheral Nerve of the Streptozotocin Diabetic Rat. Journal of Neurochemistry, 1986, 47, 1932-1935.	3.9	12
41	Tyrosine Phosphorylation of PNS Myelin PO Occurs in the Cytoplasmic Domain and Is Maximal During Early Development. Journal of Neurochemistry, 2001, 75, 347-354.	3.9	10
42	Ganglioside Treatment Modifies Abnormal Elemental Composition in Peripheral Nerve Myelinated Axons of Experimentally Diabetic Rats. Journal of Neurochemistry, 1993, 60, 477-486.	3.9	9
43	An aldose reductase inhibitor but not myo-inositol blocks enhanced polyphosphoinositide turnover in peripheral nerve from diabetic rats. Metabolism: Clinical and Experimental, 1996, 45, 320-327.	3.4	9
44	Phorbol Ester-Mediated Stimulation of Phospholipase D Activity in Sciatic Nerve from Normal and Diabetic Rats. Journal of Neurochemistry, 1992, 59, 1467-1473.	3.9	8
45	Rubidium Uptake and Accumulation in Peripheral Myelinated Internodal Axons and Schwann Cells. Journal of Neurochemistry, 2002, 69, 968-977.	3.9	7
46	The presence of phospholipase a and lysophospholipase activities in culture supernatant fluid from alteromonas espejiana. International Journal of Biochemistry & Cell Biology, 1983, 15, 1155-1159.	0.5	6
47	Activation of Adenosine A2 Receptors Stimulates Phosphoinositide Metabolism in Rat Peripheral Nerve. Journal of Neurochemistry, 2002, 66, 613-619.	3.9	5
48	Lipid composition of experimental astrocytomes originating from transformed rat and hamster astrocyte cultures. Brain Research, 1976, 109, 636-642.	2.2	4
49	Receptor-mediated phosphoinositide metabolism in peripheral nerve and cultured Schwann cells. Journal of Lipid Mediators and Cell Signalling, 1996, 14, 187-195.	0.9	3
50	POLYPHOSPHOINOSITIDE BIOSYNTHESIS IN DEVELOPING RAT BRAIN HOMOGENATES *. Annals of the New York Academy of Sciences, 1970, 165, 784-789.	3.8	2
51	[41] Direct chemical measurement of receptor-mediated changes in phosphatidylinositol levels in isolated rat liver plasma membranes. Methods in Enzymology, 1985, 109, 504-513.	1.0	2
52	NATURE OF THE RECEPTORS WHICH MEDIATE ENHANCED PHOSPHATIDYLINOSITOL TURNOVER IN RAT PINEAL GLAND. , 1978, , 167-182.		2
53	MODIFICATION OF PHOSPHATIDYLINOSITOL METABOLISM BY PROPRANOLOL AND LOCAL ANESTHETICS. , 1978, , 183-199.		2
54	Effect of gangliosides on diacylglycerol content and molecular species in nerve from diabetic rats. European Journal of Pharmacology, 1993, 239, 55-61.	3.5	1

Joseph Eichberg

#	Article	IF	CITATIONS
55	Solubilization, Purification and Properties of Membrane-Bound Brain Enzymes which Biosynthesize Phosphoinositides. , 1983, , 191-213.		1
56	Disturbances of Essential Fatty Acid Metabolism in Neural Complications of Diabetes. , 0, , 239-256.		1
57	Accumulation and Metabolism of Phosphatidyl-CMP1 (CDP-Diglyceride) in the Pineal Gland of the Rat. Advances in Experimental Medicine and Biology, 1976, 72, 149-158.	1.6	1
58	Receptor-Mediated Changes in Hepatocyte Phosphoinositide Metabolism. , 1985, , 53-60.		1
59	Modification by excessive heat of glyceryl phosphoryl ethanolamine on phenol-containing paper chromatograms. Lipids, 1973, 8, 366-367.	1.7	0
60	Decreased polyphosphoinositide metabolism accompanies myelinated fiber loss in human peripheral neuropathies. Molecular and Chemical Neuropathology, 1992, 17, 201-208.	1.0	0
61	Purification of Phosphatidylinositol Synthase from Brain. Methods in Neurosciences, 1993, 18, 85-92.	0.5	Ο