Jolanta K Grochowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1110066/publications.pdf

Version: 2024-02-01

39 papers

237 citations

1040056 9 h-index 14 g-index

40 all docs 40 docs citations

40 times ranked

209 citing authors

#	Article	IF	CITATIONS
1	Can we restore badly degraded urban lakes?. Ecological Engineering, 2015, 82, 432-441.	3.6	49
2	Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods. Water Science and Technology, 2013, 68, 234-239.	2.5	19
3	Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia, 2021, 848, 2699-2719.	2.0	17
4	How durable is the improvement of environmental conditions in a lake after the termination of restoration treatments. Ecological Engineering, 2017, 104, 23-29.	3.6	16
5	Sorption Properties of the Bottom Sediment of a Lake Restored by Phosphorus Inactivation Method 15 Years after the Termination of Lake Restoration Procedures. Water (Switzerland), 2019, 11, 2175.	2.7	14
6	From Saprotrophic to Clear Water Status: the Restoration Path of a Degraded Urban Lake. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	13
7	Influence of different recultivation methods on durability of nitrogen compounds changes in the waters of an urban lake. Water and Environment Journal, 2015, 29, 228-235.	2.2	12
8	Influence of restoration methods on the longevity of changes in the thermal and oxygen dynamics of a degraded lake. Oceanological and Hydrobiological Studies, 2015, 44, .	0.7	12
9	Assessment of Water Buffer Capacity of Two Morphometrically Different, Degraded, Urban Lakes. Water (Switzerland), 2020, 12, 1512.	2.7	11
10	The influence of different recultivation methods on the water buffer capacity in a degraded urban lake. Knowledge and Management of Aquatic Ecosystems, 2013, , 01.	1.1	8
11	Water Quality of Lake EÅ,k as a Factor Connected with Tourism, Leisure and Recreation on an Urban Area. Quaestiones Geographicae, 2016, 35, 51-59.	1.1	8
12	Behavior of Aluminum Compounds in Soft-Water Lakes Subjected to Experimental Reclamation with Polyaluminum Chloride. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	7
13	The influence of different recultivation techniques on primary production processes in a degraded urban lake. Oceanological and Hydrobiological Studies, 2014, 43, 211-218.	0.7	5
14	Variation of nitrogen forms in lakes with different intensity of anthropogenic pressure. Limnological Review, 2013, 13, 181-188.	0.5	5
15	Selected Aspects of Lake Restorations in Poland. Handbook of Environmental Chemistry, 2020, , 327-352.	0.4	4
16	Modifications in the trophic state of an urban lake, restored by different methods. Journal of Elementology, 2016, , .	0.2	4
17	THE VALIDITY OF RESERVE PROTECTION REGARDING THE SEEPAGE SPRING AREAS OF THE ÅYNA RIVER FOR TOURISM DEVELOPMENT AND PRESERVATION OF ITS WATER QUALITY. Folia Turistica, 2017, 44, 63-85.	0.1	4
18	Is It Possible to Restore a Heavily Polluted, Shallow, Urban Lake?. Applied Sciences (Switzerland), 2020, 10, 3698.	2.5	3

#	Article	IF	CITATIONS
19	Long Term Sediment Modification Effects after Applications of P Inactivation Method in Meromictic Lake (Starodworskie Lake, Olsztyn Lakeland, Poland). Land, 2021, 10, 411.	2.9	3
20	Environmental Conditions in Polish Lakes with Different Types of Catchments. Handbook of Environmental Chemistry, 2020, , 119-137.	0.4	3
21	BOTTOM DEPOSITS OF STRATIFIED, SEEPAGE, URBAN LAKE (ON EXAMPLE OF TYRSKO LAKE, POLAND) AS A FACTOR POTENTIALLY SHAPING LAKE WATER QUALITY. Journal of Ecological Engineering, 2017, 18, 55-62.	1.1	3
22	Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake. Water (Switzerland), 2021, 13, 2979.	2.7	3
23	Phosphorus Removal with Coagulation Processes in Five Low Buffered Lakes—A Case Study of Mesocosm Research. Water (Switzerland), 2019, 11, 1812.	2.7	2
24	Proposal for Water Quality Improvement by Using an Innovative and Comprehensive Restoration Method. Water (Switzerland), 2020, 12, 2377.	2.7	2
25	The Influence of the Modernization of the City Sewage System on the External Load and Trophic State of the Kartuzy Lake Complex. Applied Sciences (Switzerland), 2021, 11, 974.	2.5	2
26	Characteristics of Bottom Sediments in Polish Lakes with Different Trophic Status. Handbook of Environmental Chemistry, 2020, , 139-157.	0.4	2
27	A proposal of protection techniques in the catchment of a lake in the context of improving its recreational value. Limnological Review, 2016, 16, 33-40.	0.5	2
28	Productivity of lakes varying in water mass dynamics. Limnological Review, 2011, 11, 7-13.	0.5	1
29	Support of the Self-purification Processes in Lakes Restored in Poland. Handbook of Environmental Chemistry, 2020, , 353-371.	0.4	1
30	Hydrochemical parameters and trophic state of an urban lake used for recreation. Journal of Elementology, 2017, , .	0.2	1
31	ÂWater chemistry of lake GiÅ,wa. Journal of Elementology, 2010, , .	0.2	1
32	Vertical and Horizontal Changeability of Chemical Features of Bottom Sediment in River and Lacustrine Sections in Lake-River System. IOP Conference Series: Earth and Environmental Science, 2019, 221, 012116.	0.3	0
33	Optical Properties of Dissolved Organic Matter in Urban Fountains. IOP Conference Series: Earth and Environmental Science, 2019, 221, 012112.	0.3	0
34	External Loading of Phosphorus in Deep, Stratified Lake Affected with Drainage Water. IOP Conference Series: Earth and Environmental Science, 2019, 221, 012115.	0.3	0
35	The Pilot Study of Water Chemistry in Municipal Fountains in Olsztyn (NE Poland). IOP Conference Series: Earth and Environmental Science, 2019, 221, 012114.	0.3	0
36	Phosphorus in the shallow, urban lake subjected to restoration - case study of Lake Domowe Duże in Szczytno. Limnological Review, 2021, 21, 73-79.	0.5	0

#	Article	IF	CITATIONS
37	INFLUENCE OF ANTROPOPRESSURE ON THE CHANGE OF HYDROLOGICAL PARAMETERS OF THE RIVER FOR EXAPMPLE OF UPPER PASLEKA. , 2018, , .		O
38	THE FACTORS INFLUENCING ON THE PHOSPHORUS AND NITROGEN RETENTION IN FLOW LAKES. , 2018, , .		0
39	Nutrient Balance of North-Eastern Poland Lakes. Handbook of Environmental Chemistry, 2020, , 261-276.	0.4	O