Zhi-Cheng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11100074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRIM32 Deficiency Impairs the Generation of Pyramidal Neurons in Developing Cerebral Cortex. Cells, 2022, 11, 449.	4.1	5
2	Reducing Nav1.6 expression attenuates the pathogenesis of Alzheimer's disease by suppressing BACE1 transcription. Aging Cell, 2022, 21, e13593.	6.7	16
3	p38 MAPK Endogenous Inhibition Improves Neurological Deficits in Global Cerebral Ischemia/Reperfusion Mice. Neural Plasticity, 2022, 2022, 1-11.	2.2	4
4	Absence of TRIM32 Leads to Reduced GABAergic Interneuron Generation and Autism-like Behaviors in Mice via Suppressing mTOR Signaling. Cerebral Cortex, 2020, 30, 3240-3258.	2.9	24
5	15-Day subchronic developmental toxicity studies of ursolic acid in rats. Food and Chemical Toxicology, 2020, 144, 111537.	3.6	3
6	COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging via the BDNF/ERK1/2 Signaling Pathway. Frontiers in Aging Neuroscience, 2020, 12, 215.	3.4	19
7	Repeated dose (90 days) oral toxicity study of ursolic acid in Han-Wistar rats. Toxicology Reports, 2020, 7, 610-623.	3.3	20
8	Post-stroke gastrodin treatment ameliorates ischemic injury and increases neurogenesis and restores the Wnt/β-Catenin signaling in focal cerebral ischemia in mice. Brain Research, 2019, 1712, 7-15.	2.2	39
9	Paeoniflorin attenuates impairment of spatial learning and hippocampal long-term potentiation in mice subjected to chronic unpredictable mild stress. Psychopharmacology, 2019, 236, 2823-2834.	3.1	49
10	APP upregulation contributes to retinal ganglion cell degeneration via JNK3. Cell Death and Differentiation, 2018, 25, 663-678.	11.2	24
11	<i>Cntn6</i> deficiency impairs allocentric navigation in mice. Brain and Behavior, 2018, 8, e00969.	2.2	6
12	Wip1 knockout inhibits neurogenesis by affecting the Wnt/β-catenin signaling pathway in focal cerebral ischemia in mice. Experimental Neurology, 2018, 309, 44-53.	4.1	31
13	Navβ2 knockdown improves cognition in APP/PS1 mice by partially inhibiting seizures and APP amyloid processing. Oncotarget, 2017, 8, 99284-99295.	1.8	17
14	Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Al²1â²²42. Frontiers in Neuroscience, 2016, 10, 94.	2.8	30
15	Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway. Scientific Reports, 2016, 6, 39320.	3.3	17
16	Wip1 phosphatase modulates both long-term potentiation and long-term depression through the dephosphorylation of CaMKII. Cell Adhesion and Migration, 2016, 10, 237-247.	2.7	3
17	p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice. Scientific Reports, 2016, 6, 27600.	3.3	27
18	Gamma-H2AX upregulation caused by Wip1 deficiency increases depression-related cellular senescence in hippocampus. Scientific Reports, 2016, 6, 34558.	3.3	15

ZHI-CHENG XIAO

#	Article	IF	CITATIONS
19	Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2. Molecular Neurobiology, 2016, 53, 955-967.	4.0	34
20	Scutellarin Alleviates Behavioral Deficits in a Mouse Model of Multiple Sclerosis, Possibly Through Protecting Neural Stem Cells. Journal of Molecular Neuroscience, 2016, 58, 210-220.	2.3	36
21	CXCL1 Triggers Caspase-3 Dependent Tau Cleavage in Long-Term Neuronal Cultures and in the Hippocampus of Aged Mice: Implications in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 48, 89-104.	2.6	22
22	G protein coupled receptor 50 promotes self-renewal and neuronal differentiation of embryonic neural progenitor cells through regulation of notch and wnt/β-catenin signalings. Biochemical and Biophysical Research Communications, 2015, 458, 836-842.	2.1	17
23	Amyloid Precursor Protein Enhances Nav1.6 Sodium Channel Cell Surface Expression. Journal of Biological Chemistry, 2015, 290, 12048-12057.	3.4	29
24	Caspr4 Interaction with LNX2 Modulates the Proliferation and Neuronal Differentiation of Mouse Neural Progenitor Cells. Stem Cells and Development, 2015, 24, 640-652.	2.1	29
25	Amyloid precursor protein at node of Ranvier modulates nodal formation. Cell Adhesion and Migration, 2014, 8, 396-403.	2.7	29
26	Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiology of Aging, 2014, 35, 2713-2725.	3.1	84
27	Pulmonary Arterial Hypertension in HIV Infection: A Concise Review. Heart Lung and Circulation, 2014, 23, 299-302.	0.4	9
28	Abnormal myelination in the spinal cord of PTPα-knockout mice. Cell Adhesion and Migration, 2013, 7, 370-376.	2.7	1
29	Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adhesion and Migration, 2013, 7, 404-407.	2.7	44
30	CHL1 negatively regulates the proliferation and neuronal differentiation of neural progenitor cells through activation of the ERK1/2 MAPK pathway. Molecular and Cellular Neurosciences, 2011, 46, 296-307.	2.2	30
31	The roles of amyloid precursor protein (APP) in neurogenesis. Cell Adhesion and Migration, 2011, 5, 280-292.	2.7	112
32	Receptor-like Protein-tyrosine Phosphatase α Enhances Cell Surface Expression of Neural Adhesion Molecule NB-3. Journal of Biological Chemistry, 2011, 286, 26071-26080.	3.4	10
33	Loss of NB-3 Aggravates Cerebral Ischemia by Impairing Neuron Survival and Neurite Growth. Stroke, 2011, 42, 2910-2916.	2.0	17
34	Notch as a molecular switch in neural stem cells. IUBMB Life, 2010, 62, 618-623.	3.4	63
35	Protein-tyrosine Phosphatase α Acts as an Upstream Regulator of Fyn Signaling to Promote Oligodendrocyte Differentiation and Myelination. Journal of Biological Chemistry, 2009, 284, 33692-33702.	3.4	40
36	Recombinant DNA Vaccine Against Inhibition of Neurite Outgrowth Promotes Functional Recovery Associated with Endogeous NGF Expression in Spinal Cord Hemisected Adult Rats. Neurochemical Research, 2009, 34, 1635-1641.	3.3	2

ZHI-CHENG XIAO

#	Article	IF	CITATIONS
37	Morphological and Functional Characterization of Predifferentiation of Myelinating Glia-Like Cells from Human Bone Marrow Stromal Cells Through Activation of F3/Notch Signaling in Mouse Retina. Stem Cells, 2008, 26, 580-590.	3.2	50
38	A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nature Cell Biology, 2008, 10, 283-294.	10.3	181
39	Neural recognition molecules CHL1 and NB-3 regulate apical dendrite orientation in the neocortex via PTPα. EMBO Journal, 2008, 27, 188-200.	7.8	80
40	A TAG on to the neurogenic functions of APP. Cell Adhesion and Migration, 2008, 2, 2-8.	2.7	14
41	Cell Migration from Baby to Mother. Cell Adhesion and Migration, 2007, 1, 19-27.	2.7	68
42	DNA Vaccine and the CNS Axonal Regeneration. Current Pharmaceutical Design, 2007, 13, 2500-2506.	1.9	10
43	Physiological Roles of Neurite Outgrowth Inhibitors in Myelinated Axons of the Central Nervous System - Implications for the Therapeutic Neutralization of Neurite Outgrowth Inhibitors. Current Pharmaceutical Design, 2007, 13, 2529-2537.	1.9	9
44	Cell migration from baby to mother. Cell Adhesion and Migration, 2007, 1, 19-27.	2.7	29
45	Cross-Talk between F3/Contactin and Notch at Axoglial Interface: A Role in Oligodendrocyte Development. Developmental Neuroscience, 2006, 28, 25-33.	2.0	46
46	Ensheathing the Node of Ranvier?. Neuron Glia Biology, 2006, 2, 149-150.	1.6	1
47	Oligodendrocytes regulate formation of nodes of Ranvier via the recognition molecule OMgp. Neuron Glia Biology, 2006, 2, 151-164.	1.6	26
48	Fetal Microchimerism in the Maternal Mouse Brain: A Novel Population of Fetal Progenitor or Stem Cells Able to Cross the Blood–Brain Barrier?. Stem Cells, 2005, 23, 1443-1452.	3.2	150
49	Tenascin-R Plays a Role in Neuroprotection via Its Distinct Domains That Coordinate to Modulate the Microglia Function. Journal of Biological Chemistry, 2005, 280, 8316-8323.	3.4	61
50	NB-3/Notch1 Pathway via Deltex1 Promotes Neural Progenitor Cell Differentiation into Oligodendrocytes. Journal of Biological Chemistry, 2004, 279, 25858-25865.	3.4	119
51	Nogoâ€66 and myelinâ€associated glycoprotein (MAG) inhibit the adhesion and migration of Nogoâ€66 receptor expressing human glioma cells. Journal of Neurochemistry, 2004, 90, 1156-1162.	3.9	46
52	Recombinant DNA vaccine encoding multiple domains related to inhibition of neurite outgrowth: a potential strategy for axonal regeneration. Journal of Neurochemistry, 2004, 91, 1018-1023.	3.9	39
53	Optic nerve regeneration in polyglycolic acid–chitosan conduits coated with recombinant L1-Fc. NeuroReport, 2004, 15, 2167-2172.	1.2	50
54	Nogo-A at CNS paranodes is a ligand of Caspr: possible regulation of K+ channel localization. EMBO Journal, 2003, 22, 5666-5678.	7.8	47

ZHI-CHENG XIAO

#	Article	IF	CITATIONS
55	F3/Contactin Acts as a Functional Ligand for Notch during Oligodendrocyte Maturation. Cell, 2003, 115, 163-175.	28.9	332
56	Oligodendrocyteâ€nyelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. Journal of Neurochemistry, 2002, 82, 1566-1569.	3.9	231
57	Contactin Associates with Na ⁺ Channels and Increases Their Functional Expression. Journal of Neuroscience, 2001, 21, 7517-7525.	3.6	175
58	Tenascin-R ls a Functional Modulator of Sodium Channel β Subunits. Journal of Biological Chemistry, 1999, 274, 26511-26517.	3.4	186
59	Role for myelin-associated glycoprotein as a functional tenascin-R receptor. Journal of Neuroscience Research, 1999, 55, 687-701.	2.9	28
60	Defasciculation of neurites is mediated by tenascin-R and its neuronal receptor F3/11. Journal of Neuroscience Research, 1998, 52, 390-404.	2.9	49
61	Isolation of a Tenascin-R Binding Protein from Mouse Brain Membranes. Journal of Biological Chemistry, 1997, 272, 32092-32101.	3.4	69
62	Signaling events following the interaction of the neuronal adhesion molecule F3 with the N-terminal domain of tenascin-R. , 1997, 49, 698-709.		19
63	Distinct Effects of Recombinant Tenascin-R Domains in Neuronal Cell Functions and Identification of the Domain Interacting with the Neuronal Recognition Molecule F3/11. European Journal of Neuroscience, 1996, 8, 766-782.	2.6	101