Pau MartÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11099979/publications.pdf

Version: 2024-02-01

759233 940533 25 484 12 16 citations h-index g-index papers 26 26 26 496 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Secondary Switched Control With no Communications for Islanded Microgrids. IEEE Transactions on Industrial Electronics, 2017, 64, 8534-8545.	7.9	77
2	Control-Driven Tasks: Modeling and Analysis. , 2008, , .		42
3	Comparative study of reactive power control methods for photovoltaic inverters in lowâ€voltage grids. IET Renewable Power Generation, 2016, 10, 310-318.	3.1	42
4	Runtime Allocation of Optional Control Jobs to a Set of CAN-Based Networked Control Systems. IEEE Transactions on Industrial Informatics, 2010, 6, 503-520.	11.3	41
5	The One-Shot Task Model for Robust Real-Time Embedded Control Systems. IEEE Transactions on Industrial Informatics, 2008, 4, 164-174.	11.3	35
6	Draco: Efficient Resource Management for Resource-Constrained Control Tasks. IEEE Transactions on Computers, 2009, 58, 90-105.	3.4	33
7	Impact of Clock Drifts on Communication-Free Secondary Control Schemes for Inverter-Based Islanded Microgrids. IEEE Transactions on Industrial Electronics, 2018, 65, 4739-4749.	7.9	29
8	Design of an Embedded Control System Laboratory Experiment. IEEE Transactions on Industrial Electronics, 2010, 57, 3297-3307.	7.9	27
9	Performance Evaluation of Secondary Control Policies with Respect to Digital Communications Properties in Inverter-based Islanded Microgrids. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	24
10	Performing Flexible Control on Low-Cost Microcontrollers Using a Minimal Real-Time Kernel. IEEE Transactions on Industrial Informatics, 2008, 4, 125-133.	11.3	23
11	Local Frequency Restoration for Droop-Controlled Parallel Inverters in Islanded Microgrids. IEEE Transactions on Energy Conversion, 2019, 34, 1232-1241.	5.2	22
12	Analysis of the Effect of Clock Drifts on Frequency Regulation and Power Sharing in Inverter-Based Islanded Microgrids. IEEE Transactions on Power Electronics, 2018, 33, 10363-10379.	7.9	20
13	Droopâ€free hierarchical control strategy for inverterâ€based AC microgrids. IET Power Electronics, 2020, 13, 1403-1415.	2.1	14
14	One-step finite horizon boundary with varying control gain for event-driven Networked Control Systems. , $2011, \ldots$		12
15	Analysis and design of networked control loops with synchronization at the actuation instants. , 2008, , .		8
16	Experimental evaluation of slack management in real-time control systems: Coordinated vs. self-triggered approach. Journal of Systems Architecture, 2010, 56, 63-74.	4.3	8
17	Resource and performance trade-offs in real-time embedded control systems. Real-Time Systems, 2013, 49, 267-307.	1.3	8
18	The Optimal Boundary and Regulator Design Problem for Event-Driven Controllers. Lecture Notes in Computer Science, 2009, , 441-444.	1.3	8

Pau MartÃ-

#	Article	IF	Citations
19	Synchronizing sampling and actuation in the absence of global time in Networked Control Systems. , 2010, , .		4
20	Schedulability analysis for CAN-based networked control systems with dynamic bandwidth management. , $2009, , .$		3
21	Lowering traffic without sacrificing performance in Networked Control Systems. , 2011, , .		2
22	Hands-on course in networked control systems. , 2012, , .		1
23	A distributed control for accurate activeâ€power sharing in islanded microgrids subject to clock drifts. IET Power Electronics, 2021, 14, 518-530.	2.1	1
24	Toward new controller design paradigms in networked control systems. , 2014, , .		0
25	Effects of clock deviations on the performance of microgrids based on virtual synchronous generators. IET Power Electronics, 2021, 14, 2337-2349.	2.1	0