List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1109973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feruloyl Sucrose Esters: Potent and Selective Inhibitors of α-glucosidase and α-amylase. Current Medicinal Chemistry, 2022, 29, 1606-1621.	2.4	4
2	Targeted Synthesis of 3,3′-, 3,4′- and 3,6′-Phenylpropanoid Sucrose Esters. Molecules, 2022, 27, 535.	3.8	1
3	lodine-DMSO mediated conversion of <i>N</i> -arylcyanothioformamides to <i>N</i> -arylcyanoformamides and the unexpected formation of 2-cyanobenzothiazoles. RSC Advances, 2022, 12, 6133-6148.	3.6	5
4	Synthesis, α-glucosidase inhibition, α-amylase inhibition, and molecular docking studies of 3,3-di(indolyl)indolin-2-ones. Heliyon, 2022, 8, e09045.	3.2	17
5	A Practical Synthesis of Densely Functionalized Pyrroles via a Three-Component Cascade Reaction between Carbohydrates, Oxoacetonitriles, and Ammonium Acetate. Journal of Organic Chemistry, 2021, 86, 837-849.	3.2	15
6	Cinnamoyl Sucrose Esters as Alpha Glucosidase Inhibitors for the Treatment of Diabetes. Molecules, 2021, 26, 469.	3.8	4
7	Chemistry of trisindolines: natural occurrence, synthesis and bioactivity. RSC Advances, 2021, 11, 25381-25421.	3.6	11
8	Insights into the mechanism of formation of non-conventional cochleates and its impact on their functional properties. Journal of Molecular Liquids, 2021, 335, 116249.	4.9	3
9	Hybrid vanadium dioxide-liquid crystal tunable non-reciprocal scattering metamaterial smart window for visible and infrared radiation control. Optical Materials Express, 2021, 11, 3023.	3.0	10
10	Continuous, high-throughput production of artemisinin-loaded supramolecular cochleates using simple off-the-shelf flow focusing device. Materials Science and Engineering C, 2020, 108, 110410.	7.3	8
11	TMSOTf-Promoted Intermolecular Cascade Reaction of Aromatic Diazo Ketones with Olefins: Selective Synthesis of 3-Arylethylideneoxindoles. Journal of Organic Chemistry, 2020, 85, 9129-9138.	3.2	2
12	Cochleateâ€Doped Liquid Crystal as Switchable Metamaterial Window Mediated by Molecular Orientation Modified Aggregation. Particle and Particle Systems Characterization, 2020, 37, 2000067.	2.3	10
13	<i>N</i> â€Arylcyanothioformamides: Preparation Methods and Application in the Synthesis of Bioactive Molecules. ChemistrySelect, 2020, 5, 764-798.	1.5	5
14	Robust perfluorophenylboronic acid-catalyzed stereoselective synthesis of 2,3-unsaturated <i>O</i> -, <i>C</i> -, <i>N</i> - and <i>S</i> -linked glycosides. Beilstein Journal of Organic Chemistry, 2019, 15, 1275-1280.	2.2	7
15	Perfluorophenylboronic acid-catalyzed direct α-stereoselective synthesis of 2-deoxygalactosides from deactivated peracetylated <scp>d</scp> -galactal. Chemical Communications, 2019, 55, 12204-12207.	4.1	17
16	Efficient, one-step, cascade synthesis of densely functionalized furans from unprotected carbohydrates in basic aqueous media. Green Chemistry, 2019, 21, 821-829.	9.0	24
17	Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery. Journal of Drug Delivery Science and Technology, 2019, 52, 27-36.	3.0	16
18	Polymer-supported triphenylphosphine: application in organic synthesis and organometallic reactions. RSC Advances, 2019, 9, 35217-35272.	3.6	20

#	Article	IF	CITATIONS
19	Efficient Synthesis of αâ€Glycosyl Chlorides Using 2â€Chloroâ€1,3â€dimethylimidazolinium Chloride: A Convenient Protocol for Quick Oneâ€Pot Glycosylation. European Journal of Organic Chemistry, 2018, 2018, 2208-2213.	2.4	15
20	Short Synthesis of Phenylpropanoid Glycosides Calceolarioside A and Syringalide B. Synlett, 2018, 29, 1079-1083.	1.8	5
21	Unexpected formation of 1-[4-chloromethylphenyl]-5-[4-(methylsulfonyl)benzyl]-1 H -tetrazole and 1-[4-chloromethylphenyl]-5-[4-(aminosulfonyl)phenyl]-1 H -tetrazole: Crystal structure, bioassay screening and molecular docking studies. Journal of Molecular Structure, 2018, 1164, 317-327.	3.6	3
22	Total synthesis of phenylpropanoid glycoside osmanthuside-B ₆ facilitated by double isomerisation of glucose–rhamnose orthoesters. Organic and Biomolecular Chemistry, 2017, 15, 2638-2646.	2.8	5
23	Short synthesis of phenylpropanoid glycosides calceolarioside-B and eutigoside-A. Tetrahedron Letters, 2017, 58, 109-111.	1.4	13
24	Impact of the type of emulsifier on the physicochemical characteristics of the prepared fish oil-loaded microcapsules. Journal of Microencapsulation, 2017, 34, 366-382.	2.8	9
25	Chemoenzymatic Synthesis of Chiral 1â€Benzylâ€5â€(hydroxymethyl)â€2â€piperidone Enabled by Lipase AKâ€M Desymmetrization of Prochiral 1,3â€Diol and Its Diacetate. European Journal of Organic Chemistry, 2016, 2016, 3084-3089.	ediated 2.4	12
26	Microencapsulation of fish oil. Lipid Technology, 2016, 28, 13-15.	0.3	18
27	Short synthesis of phenylpropanoid glycoside grayanoside-A and analogues. Carbohydrate Research, 2016, 436, 50-53.	2.3	6
28	Synthesis of Chiral Tetrahydroisoquinoline and C 2-Symmetric Bistetrahydroisoquinoline Ligands and Their Application in the Enantioselective Henry Reaction. Synthesis, 2016, 48, 2271-2279.	2.3	3
29	Impact of encapsulation on the physicochemical properties and gastrointestinal stability of fish oil. LWT - Food Science and Technology, 2016, 65, 206-213.	5.2	26
30	Encapsulation of fish oil with N-stearoyl O-butylglyceryl chitosan using membrane and ultrasonic emulsification processes. Carbohydrate Polymers, 2015, 123, 432-442.	10.2	44
31	Synthesis, structure, spectroscopic and DFT studies of zinc(II) and manganese(II) complexes of 2-pyridine carboxaldehyde-N-methyl-N-2-pyridyl hydrazone. Polyhedron, 2015, 101, 118-125.	2.2	5
32	Efficient Direct and Modular Stereoselective Synthesis of Highly Functionalized Tetrahydroisoquinolines and C 2-1,1′-Bitetrahydroisoquinolines. Synthesis, 2014, 46, 2780-2788.	2.3	2
33	Design Aspects of Metal-Free Nitrogen-Based Catalysts and Their Influence on the Yield in the Henry Reaction. Synthesis, 2014, 46, 1793-1801.	2.3	4
34	Particle size reduction of poorly water soluble artemisinin via antisolvent precipitation with a syringe pump. Powder Technology, 2013, 237, 468-476.	4.2	27
35	Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers. Journal of Applied Polymer Science, 2013, 129, 1793-1798.	2.6	14
36	Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids. Chemosphere, 2013, 91, 1627-1634.	8.2	33

#	Article	IF	CITATIONS
37	Catalytic Enantioselective Conjugate Addition of Grignard Reagents to Cyclic Enones UsingC1-1,1′-Bisisoquinoline-Based Chiral Ligands. Synthetic Communications, 2012, 42, 1585-1592.	2.1	3
38	Synthesis and antiproliferative activity of helonioside A, 3′,4′,6′-tri-O-feruloylsucrose, lapathoside C and their analogs. European Journal of Medicinal Chemistry, 2012, 58, 418-430.	5.5	22
39	Synthesis and antitumor activity of lapathoside D and its analogs. European Journal of Medicinal Chemistry, 2012, 53, 1-12.	5.5	23
40	Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technology, 2012, 223, 59-64.	4.2	92
41	Iron(III) Chloride–Promoted Isomerization of Propargyl Alcohols to α , β -Unsaturated Carbonyl Compounds. Synthetic Communications, 2011, 41, 533-540.	2.1	14
42	Sorting of Single-Walled Carbon Nanotubes Based on Metallicity by Selective Precipitation with Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2011, 115, 5199-5206.	3.1	14
43	Dissolution Enhancement of Artemisinin with .BETACyclodextrin. Chemical and Pharmaceutical Bulletin, 2011, 59, 646-652.	1.3	26
44	Catalytic anti-selective asymmetric Henry (nitroaldol) reaction catalyzed by Cu(I)–amine–imine complexes. Tetrahedron: Asymmetry, 2011, 22, 2065-2070.	1.8	18
45	6-Chlorothieno[2,3-e]-1,4,2-dithiazine-3(2H)-thione-1,1-dioxide, Ammonium Salt Sesquihydrate: Synthesis, Crystal Structure and Density Functional Calculations. Journal of Chemical Crystallography, 2011, 41, 1335-1341.	1.1	3
46	1,1′-Methylene-bis(1,1′,2,2′,3,3′,4,4′-octahydroisoquinoline): synthesis, reaction, resolution, and ap in catalytic enantioselective transformations. Tetrahedron, 2011, 67, 4086-4092.	oplication	19
47	Efficient Asymmetric Copper(I)-Catalyzed Henry Reaction Using Chiral N-Alkyl-C1-tetrahydro-1,1′-bisisoquinolines. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	2.4	6
48	Modular amino acidsâ€based chiral ligands for copper atalyzed enantioselective conjugation addition of diethylzinc to cyclic enones. Chirality, 2011, 23, 105-112.	2.6	6
49	Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier. Materials Science and Engineering C, 2011, 31, 391-399.	7.3	23
50	Preparation, characterization and dissolution behavior of artemisinin microparticles. Advanced Powder Technology, 2011, 22, 458-463.	4.1	6
51	Enantioselective nitroaldol reaction catalyzed by chiral C1-tetrahydro-1,1′-bisisoquinoline–copper(I) complexes. Tetrahedron: Asymmetry, 2011, 22, 929-935.	1.8	17
52	Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension. Journal of Pharmacy and Pharmacology, 2010, 62, 413-421.	2.4	29
53	X-ray structure, electronic properties and density functional calculations: trans-Dihalo (1-(4-phenylimino)-1-(phenylhydrazono)-propan-2-one) (4,4′-di-tert-butyl-2,2-bipyridine) ruthenium(II) complexes. Polyhedron, 2010, 29, 3214-3219.	2.2	9
54	Fabrication of composite microparticles of artemisinin for dissolution enhancement. Powder Technology, 2010, 203, 277-287.	4.2	18

ZAHER M A JUDEH

-	#	Article	IF	CITATIONS
	55	Novel chiral C1-1′,2′,3′,4′-tetrahydro-1,1′-bisisoquinolines: synthesis, resolution, and applications in catalytic enantioselective reactions. Tetrahedron, 2010, 66, 4195-4205.	1.9	20
,	56	Structurally constrained C1-1,1′-bisisoquinoline-based chiral ligands: geometrical implications on enantioinduction in the addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry, 2010, 21, 429-436.	1.8	21
	57	Use of Polyimide- <i>graft</i> -Bisphenol A Diglyceryl Acrylate as a Reactive Noncovalent Dispersant of Single-Walled Carbon Nanotubes for Reinforcement of Cyanate Ester/Epoxy Composite. Chemistry of Materials, 2010, 22, 6542-6554.	6.7	52
	58	Specific Functionalization of Carbon Nanotubes for Advanced Polymer Nanocomposites. Advanced Functional Materials, 2009, 19, 3962-3971.	14.9	93
	59	Solubility Enhancement of a Poorly Water-Soluble Anti-Malarial Drug: Experimental Design and Use of a Modified Multifluid Nozzle Pilot Spray Drier. Journal of Pharmaceutical Sciences, 2009, 98, 281-296.	3.3	27
	60	Enantioselective addition of diethylzinc to aromatic aldehydes catalyzed by Ti(IV) complexes of C2-symmetrical chiral BINOL derivatives. Tetrahedron Letters, 2009, 50, 281-283.	1.4	34
I	61	Theoretical studies of the conformers of rac-6,6â \in 2,7,7â \in 2-tetramethoxy-1,1â \in 2,2,2â \in 2,3,3â \in 2,4,4â \in 2-octahydro-1,1â \in 2-bisisoquinoline and its N-acyl and derivatives. Computational and Theoretical Chemistry, 2009, 897, 22-31.	Ni-alkyl	6
	62	Addition of β-Malic Acid-Containing Poly(ethylene glycol) Dimethacrylate To Form Biodegradable and Biocompatible Hydrogels. Biomacromolecules, 2009, 10, 2043-2052.	5.4	26
	63	A facile synthesis of 3,5-dimethyl-4-hydroxybenzaldehyde via copper-mediated selective oxidation of 2,4,6-trimethylphenol. Catalysis Today, 2008, 131, 423-426.	4.4	9
	64	Synthesis and Supramolecularity of C-Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers. Molecular Crystals and Liquid Crystals, 2007, 474, 89-110.	0.9	12
	65	Efficient Copper-bisisoquinoline-based Catalysts for Selective Aerobic Oxidation of Alcohols to Aldehydes and Ketones. International Journal of Molecular Sciences, 2007, 8, 505-512.	4.1	23
	66	Interconversion of copper(II) to copper(I): synthesis, characterization of copper(II) and copper(I) 2,2′-biquinoline complexes and their microbiological activity. Journal of Coordination Chemistry, 2006, 59, 229-241.	2.2	15
	67	(Ï€)C—H···S, (allyl)C—H···C(Ï€) and π··Â [·] I€ intermolecular interactions: synthesis, characterization, an crystal structure of 2,2′-bipyridine bis(diallyldithiocarbamato)zinc(II). Structural Chemistry, 2006, 17, 423-429.	d 2.0	7
	68	Crystal structure of cis-[Rh(biq)2Cl2]Cl·3H2O: Solid-state characterization and crystal packing analysis. Journal of Chemical Crystallography, 2006, 36, 41-46.	1.1	1
	69	New edge–edge packing motifs present in the crystal structures of a thia-bridged tetrabromo aryl host. CrystEngComm, 2005, 7, 139-142.	2.6	22
	70	Mechanism of Interactions between Hg(II) and Demeton S:Â an NMR Study. Environmental Science & Technology, 2005, 39, 2586-2591.	10.0	14
	71	Selective alkylation of phenol with tert-butyl alcohol catalyzed by [bmim]PF6. Tetrahedron Letters, 2003, 44, 981-983.	1.4	58

 $\label{eq:rescaled_$

#	Article	IF	CITATIONS
73	Structural Studies of N-Acyl 1,1′-Bis(1,2,3,4-tetrahydroisoquinoline) Derivatives. Australian Journal of Chemistry, 2002, 55, 733.	0.9	14
74	The first Bischler–Napieralski cyclization in a room temperature ionic liquid. Tetrahedron Letters, 2002, 43, 5089-5091.	1.4	61
75	A facile and efficient nucleophilic displacement reaction at room temperature in ionic liquids. Tetrahedron Letters, 2002, 43, 9381-9384.	1.4	36
76	An orthogonal approach for the precise synthesis of phenylpropanoid sucrose esters. New Journal of Chemistry, 0, , .	2.8	2