
Thomas A Vogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11098672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs. Contributions To Mineralogy and Petrology, 2012, 163, 259-275.	3.1	11
2	Origin of silicic volcanism in the Panamanian arc: evidence for a two-stage fractionation process at El Valle volcano. Contributions To Mineralogy and Petrology, 2011, 162, 1115-1138.	3.1	28
3	The basaltic to trachydacitic upper Diliman Tuff in Manila: Petrogenesis and comparison with deposits from Taal and Laguna Calderas. Journal of Volcanology and Geothermal Research, 2008, 177, 1020-1034.	2.1	4
4	Evaluation of magma mixing and fractional crystallization using wholeâ€rock chemical analyses: Polytopic vector analyses. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	16
5	Identifying relationships among silicic magma batches by polytopic vector analysis: A study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic field. Journal of Volcanology and Geothermal Research, 2007, 167, 198-211.	2.1	13
6	Origin of distinct silicic magma types from the GuachipelÃn Caldera, NW Costa Rica: Evidence for magma mixing and protracted subvolcanic residence. Journal of Volcanology and Geothermal Research, 2007, 165, 103-126.	2.1	29
7	Geochemistry of silicic magmas in the Macolod Corridor, SW Luzon, Philippines: evidence of distinct, mantle-derived, crustal sources for silicic magmas. Contributions To Mineralogy and Petrology, 2006, 151, 267-281.	3.1	27
8	Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. Journal of Volcanology and Geothermal Research, 2006, 154, 103-116.	2.1	99
9	Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts. Journal of Volcanology and Geothermal Research, 2006, 156, 217-228.	2.1	46
10	Generation of Porphyritic and Equigranular Mafic Enclaves During Magma Recharge Events at Unzen Volcano, Japan. Journal of Petrology, 2006, 47, 301-328.	2.8	70
11	Silicic ignimbrites within the Costa Rican volcanic front: evidence for the formation of continental crust. Earth and Planetary Science Letters, 2004, 226, 149-159.	4.4	62
12	Origin and emplacement of the andesite of Burroughs Mountain, a zoned, large-volume lava flow at Mount Rainier, Washington, USA. Journal of Volcanology and Geothermal Research, 2003, 119, 275-296.	2.1	9
13	Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment. Geology, 2002, 30, 799.	4.4	58
14	Origin of silicic volcanic rocks in Central Costa Rica: a study of a chemically variable ash-flow sheet in the TiribÃ-Tuff. Bulletin of Volcanology, 2002, 64, 117-133.	3.0	48
15	Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA. Journal of Volcanology and Geothermal Research, 1997, 78, 185-208.	2.1	41
16	Melt inclusions from chemically zoned ash flow sheets from the Southwest Nevada Volcanic Field. Journal of Geophysical Research, 1996, 101, 5591-5610.	3.3	19
17	Origin of compositional heterogeneities in tuffs of the Timber Mountain Group: The relationship between magma batches and magma transfer and emplacement in an extensional environment. Journal of Geophysical Research, 1995, 100, 15793-15805.	3.3	28
18	Incremental growth of a large volume, chemically zoned magma body: a study of the tephra sequence beneath the Rainier Mesa ash flow sheet of the Timber Mountain Tuff. Bulletin of Volcanology, 1994, 56, 377-385.	3.0	10

THOMAS A VOGEL

#	Article	IF	CITATIONS
19	Magma mixing due to disruption of a layered magma body. Journal of Volcanology and Geothermal Research, 1989, 36, 241-255.	2.1	15
20	Evidence for dynamic withdrawal from a layered magma body: The Topopah Spring Tuff, southwestern Nevada. Journal of Geophysical Research, 1989, 94, 5925-5942.	3.3	59
21	Chemical evolution of a magmatic system: The Paintbrush Tuff, Southwest Nevada Volcanic Field. Journal of Geophysical Research, 1989, 94, 5943-5960.	3.3	31
22	Evolution of a Chemically Zoned Magma Body: Black Mountain Volcanic Center, southwestern Nevada. Journal of Geophysical Research, 1989, 94, 6041-6058.	3.3	28
23	Petrology and emplacement dynamics of intrusive and extrusive rhyolites of Obsidian Dome, Inyo Craters Volcanic Chain, eastern California. Journal of Geophysical Research, 1989, 94, 17937-17956.	3.3	76
24	Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California. Journal of Geophysical Research, 1988, 93, 13208-13220.	3.3	45
25	Constraints on magma ascent, emplacement, and eruption: Geochemical and mineralogical data from drill-core samples at Obsidian dome, Inyo chain, California. Geology, 1987, 15, 405.	4.4	46
26	Limits to Magma Mixing Based on Chemistry and Mineralogy of Pumice Fragments Erupted from a Chemically Zoned Magma Body. Journal of Geology, 1987, 95, 659-670.	1.4	18
27	Petrochemistry of the silicic-mafic complexes at Vesturhorn and Austurhorn, Iceland: evidence for zoned/stratified magma. Journal of Volcanology and Geothermal Research, 1986, 28, 197-223.	2.1	19
28	Magma mixing: the Marsco suite, Isle of Skye, Scotland. Contributions To Mineralogy and Petrology, 1984, 87, 231-241.	3.1	31
29	Stratigraphic relations and source areas of ashâ€flow sheets of the Black Mountain and Stonewall Mountain Volcanic Centers, Nevada. Journal of Geophysical Research, 1984, 89, 8593-8602.	3.3	22
30	Magma mixing in the acidic-basic complex of Ardnamurchan: Implications on the evolution of shallow magma chambers. Contributions To Mineralogy and Petrology, 1982, 79, 411-423.	3.1	30
31	A model for the origin of the alkaline complexes of Egypt. Nature, 1981, 291, 571-574.	27.8	36
32	The origin of the acidic and basic rocks of the Tichka Massif, Morocco, based on rare earth elements. Contributions To Mineralogy and Petrology, 1980, 75, 89-95.	3.1	13
33	The Composite Dikes at Mount Desert Island, Maine: An Example of Coexisting Acidic and Basic Magmas. Journal of Geology, 1980, 88, 433-444.	1.4	61
34	Feldspar geothermometry of the Hell Canyon Pluton, Boulder Batholith, Montana. Contributions To Mineralogy and Petrology, 1979, 71, 151-155.	3.1	2
35	Coexisting Acidic and Basic Melts: Geochemistry of a Composite Dike. Journal of Geology, 1978, 86, 353-371.	1.4	43
36	Origin of the late Paleozoic plutonic massifs in Morocco. Bulletin of the Geological Society of America, 1976, 87, 1753.	3.3	14

THOMAS A VOGEL

#	Article	IF	CITATIONS
37	The Tichka Massif, Morocco—an example of contemporaneous acidic and basic plutonism. Lithos, 1975, 8, 29-38.	1.4	15
38	Grain boundary processes and development of metamorphic plagioclase. Lithos, 1973, 6, 183-202.	1.4	8
39	Textural Variation in Petrogenetic Analyses. Bulletin of the Geological Society of America, 1972, 83, 665.	3.3	16