

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11097881/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Centrifuge modelling of spudcan–pile interaction in soft clay overlying sand. Geotechnique, 2017, 67,<br>69-77.                                                                                                                             | 2.2 | 20        |
| 2  | Tunneling beneath Existing Buildings Supported on Shallow Foundations. , 2016, , .                                                                                                                                                          |     | 0         |
| 3  | Prediction of Drag Anchor Trajectory With Both Shallow and Deep Anchor Behavior. , 2016, , .                                                                                                                                                |     | 0         |
| 4  | Closure to "Severe Damage of a Pile Group due to Slope Failure―by D. E. L. Ong, C. F. Leung, Y. K. Chow, and T. G. Ng. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, 07016004.                                | 1.5 | 1         |
| 5  | Severe Damage of a Pile Group due to Slope Failure. Journal of Geotechnical and Geoenvironmental<br>Engineering - ASCE, 2015, 141, .                                                                                                        | 1.5 | 35        |
| 6  | Closure to "Behavior of Pile Groups Subject to Excavation-Induced Soil Movement in Very Soft Clay―<br>by D. E. L. Ong, C. F. Leung, and Y. K. Chow. Journal of Geotechnical and Geoenvironmental Engineering -<br>ASCE, 2011, 137, 112-113. | 1.5 | 3         |
| 7  | Behavior of Pile Groups Subject to Excavation-Induced Soil Movement in Very Soft Clay. Journal of<br>Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 1462-1474.                                                            | 1.5 | 64        |
| 8  | Revealing the bearing capacity mechanisms of a penetrating spudcan through sand overlying clay.<br>Geotechnique, 2008, 58, 793-804.                                                                                                         | 2.2 | 99        |
| 9  | Torsional Piles in Two-Layered Nonhomogeneous Soil. International Journal of Geomechanics, 2007, 7, 410-422.                                                                                                                                | 1.3 | 27        |
| 10 | Application of enhanced assumed strain finite element method to predict collapse loads of undrained geotechnical problems. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31, 1033-1043.                 | 1.7 | 4         |
| 11 | Hybrid and enhanced finite element methods for problems of soil consolidation. International<br>Journal for Numerical Methods in Engineering, 2007, 69, 221-249.                                                                            | 1.5 | 11        |
| 12 | Centrifuge Model Study on Pile Responses due to Adjacent Excavation. , 2006, , 145.                                                                                                                                                         |     | 3         |
| 13 | Pile Behavior Due to Excavation-Induced Soil Movement in Clay. II: Collapsed Wall. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 45-53.                                                                       | 1.5 | 54        |
| 14 | Pile Behavior due to Excavation-Induced Soil Movement in Clay. I: Stable Wall. Journal of Geotechnical<br>and Geoenvironmental Engineering - ASCE, 2006, 132, 36-44.                                                                        | 1.5 | 93        |
| 15 | Influence of base suction on extraction of jack-up spudcans. Geotechnique, 2005, 55, 741-753.                                                                                                                                               | 2.2 | 69        |
| 16 | Closure to "Centrifuge Model Study of Laterally Loaded Pile Groups in Clay,―by T. Ilyas, C. F. Leung, Y.<br>K. Chow, and S. S. Budi. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131,<br>1308-1308.              | 1.5 | 3         |
| 17 | Centrifuge Model Study of Laterally Loaded Pile Groups in Clay. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 274-283.                                                                                        | 1.5 | 118       |
| 18 | Low Strain Integrity Testing of Piles: Three-Dimensional Effects. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2003, 129, 1057-1062.                                                                                    | 1.5 | 95        |

ҮКСноw

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Behavior of Pile Groups Subject to Excavation-Induced Soil Movement. Journal of Geotechnical and<br>Geoenvironmental Engineering - ASCE, 2003, 129, 58-65.                              | 1.5 | 58        |
| 20 | Analysis of Piled Raft Foundations Using a Variational Approach. International Journal of Geomechanics, 2001, 1, 129-147.                                                               | 1.3 | 19        |
| 21 | Improvement of granular soils by high-energy impact. Proceedings of the Institution of Civil<br>Engineers: Ground Improvement, 2000, 4, 31-35.                                          | 0.7 | 6         |
| 22 | A variational approach for the analysis of pile group–pile cap interaction. Geotechnique, 2000, 50,<br>349-357.                                                                         | 2.2 | 34        |
| 23 | Behavior of Pile Subject to Excavation-Induced Soil Movement. Journal of Geotechnical and<br>Geoenvironmental Engineering - ASCE, 2000, 126, 947-954.                                   | 1.5 | 95        |
| 24 | Practical Method for Settlement Analysis of Pile Groups. Journal of Geotechnical and<br>Geoenvironmental Engineering - ASCE, 2000, 126, 890-897.                                        | 1.5 | 5         |
| 25 | A method for the analysis of large vertically loaded pile groups. , 1999, 23, 243-262.                                                                                                  |     | 8         |
| 26 | Variational solution for vertically loaded pile groups in an elastic half-space. Geotechnique, 1999, 49,<br>199-213.                                                                    | 2.2 | 33        |
| 27 | A variational approach for vertical deformation analysis of pile group. International Journal for<br>Numerical and Analytical Methods in Geomechanics, 1997, 21, 741-752.               | 1.7 | 37        |
| 28 | ANALYSIS OF PILES USED FOR SLOPE STABILIZATION. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20, 635-646.                                          | 1.7 | 66        |
| 29 | ANALYSIS OF PILES USED FOR SLOPE STABILIZATION. , 1996, 20, 635.                                                                                                                        |     | 4         |
| 30 | Prediction of pile capacity from stress-wave measurements: A neural network approach. International<br>Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19, 107-126. | 1.7 | 22        |
| 31 | Dynamic Compaction of Loose Granular Soils: Effect of Print Spacing. Journal of Geotechcnical<br>Engineering, 1994, 120, 1115-1133.                                                     | 0.4 | 62        |
| 32 | Negative skin friction on single piles in a layered half-space. International Journal for Numerical and<br>Analytical Methods in Geomechanics, 1993, 17, 625-645.                       | 1.7 | 7         |
| 33 | Further Contributions to Reliabilityâ€Based Pile‣ettlement Analysis. Journal of Geotechcnical<br>Engineering, 1992, 118, 726-741.                                                       | 0.4 | 10        |
| 34 | Dynamic Compaction Analysis. Journal of Geotechcnical Engineering, 1992, 118, 1141-1157.                                                                                                | 0.4 | 68        |
| 35 | Pileâ€Capâ€Pileâ€Group Interaction in Nonhomogeneous Soil. Journal of Geotechcnical Engineering, 1991,<br>117, 1655-1668.                                                               | 0.4 | 36        |
| 36 | Pile group settlement: A probabilistic approach. International Journal for Numerical and Analytical Methods in Geomechanics, 1991, 15, 817-832.                                         | 1.7 | 10        |

ҮК Сноw

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dynamic response of surface foundations on layered media. Earthquake Engineering and Structural<br>Dynamics, 1991, 20, 1065-1081.                                                                                                  | 2.5 | 8         |
| 38 | A theoretical study of pile heave. Geotechnique, 1990, 40, 1-14.                                                                                                                                                                   | 2.2 | 22        |
| 39 | Negative skin friction on pile groups. International Journal for Numerical and Analytical Methods in<br>Geomechanics, 1990, 14, 75-91.                                                                                             | 1.7 | 38        |
| 40 | Settlement Analysis of Socketed Pile Groups. Journal of Geotechcnical Engineering, 1990, 116, 1171-1184.                                                                                                                           | 0.4 | 6         |
| 41 | Reliability Analysis of Pile Settlement. Journal of Geotechcnical Engineering, 1990, 116, 1717-1734.                                                                                                                               | 0.4 | 48        |
| 42 | Closure to "Rational Wave Equation Model for Pileâ€Driving Analysis―by S. L. Lee, Y. K. Chow, G. P.<br>Karunarantne, and K. Y. Wong (March, 1988, Vol. 114, No. 3). Journal of Geotechcnical Engineering, 1989,<br>115, 1195-1197. | 0.4 | 0         |
| 43 | Axially loaded piles and pile groups embedded in a cross-anisotropic soil. Geotechnique, 1989, 39, 203-212.                                                                                                                        | 2.2 | 33        |
| 44 | Reply by authors to E. kausel. Earthquake Engineering and Structural Dynamics, 1989, 18, 1085-1085.                                                                                                                                | 2.5 | 1         |
| 45 | Prediction of pile capacity from stress-wave measurements: Some numerical aspects. International<br>Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12, 505-512.                                               | 1.7 | 3         |
| 46 | Dynamic finite strip analysis of surface foundations. Earthquake Engineering and Structural Dynamics, 1988, 16, 457-467.                                                                                                           | 2.5 | 9         |
| 47 | Rational Wave Equation Model for Pileâ€Driving Analysis. Journal of Geotechcnical Engineering, 1988, 114, 306-325.                                                                                                                 | 0.4 | 72        |
| 48 | Prediction of load-carrying capacity of driven piles. Canadian Geotechnical Journal, 1988, 25, 13-23.                                                                                                                              | 1.4 | 15        |
| 49 | lterative analysis of pile–soil–pile interaction. Geotechnique, 1987, 37, 321-333.                                                                                                                                                 | 2.2 | 11        |
| 50 | Threeâ€Ðimensional Analysis of Pile Groups. Journal of Geotechcnical Engineering, 1987, 113, 637-651.                                                                                                                              | 0.4 | 17        |
| 51 | Vertical deformation of rigid foundations of arbitrary shape on layered soil media. International<br>Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11, 1-15.                                                 | 1.7 | 33        |
| 52 | Response of pile groups subjected to lateral loads. International Journal for Numerical and Analytical<br>Methods in Geomechanics, 1987, 11, 307-314.                                                                              | 1.7 | 22        |
| 53 | Interaction between jack-up rig foundations and offshore platform piles. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11, 325-344.                                                            | 1.7 | 4         |
| 54 | Axial and lateral response of pile groups embedded in nonhomogeneous soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11, 621-638.                                                         | 1.7 | 58        |

Ү К Сноw

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Vertical vibration of three-dimensional rigid foundations on layered media. Earthquake Engineering<br>and Structural Dynamics, 1987, 15, 585-594.              | 2.5 | 17        |
| 56 | Analysis of vertically loaded pile groups. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10, 59-72.                        | 1.7 | 174       |
| 57 | Simplified analysis of dynamic response of rigid foundations with arbitrary geometries. Earthquake<br>Engineering and Structural Dynamics, 1986, 14, 643-653.  | 2.5 | 15        |
| 58 | Analysis of dynamic behaviour of piles. International Journal for Numerical and Analytical Methods in<br>Geomechanics, 1985, 9, 383-390.                       | 1.7 | 2         |
| 59 | Accuracy of consistent and lumped viscous dampers in wave propagation problems. International Journal for Numerical Methods in Engineering, 1985, 21, 723-732. | 1.5 | 10        |
| 60 | Static and periodic infinite solid elements. International Journal for Numerical Methods in Engineering, 1981, 17, 503-526.                                    | 1.5 | 108       |