
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11096995/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 1  | Fluoroâ€Substituted nâ€Type Conjugated Polymers for Additiveâ€Free Allâ€Polymer Bulk Heterojunction Solar<br>Cells with High Power Conversion Efficiency of 6.71%. Advanced Materials, 2015, 27, 3310-3317.                  | 11.1              | 421          |
| 2  | On the morphology of polymerâ€based photovoltaics. Journal of Polymer Science, Part B: Polymer<br>Physics, 2012, 50, 1018-1044.                                                                                              | 2.4               | 297          |
| 3  | A Fluorinated Phenylene Unit as a Building Block for Highâ€Performance nâ€Type Semiconducting Polymer.<br>Advanced Materials, 2013, 25, 2583-2588.                                                                           | 11.1              | 249          |
| 4  | Fabrication of Highly Conductive and Transparent Thin Films from Single-Walled Carbon Nanotubes<br>Using a New Non-ionic Surfactant <i>via</i> Spin Coating. ACS Nano, 2010, 4, 5382-5388.                                   | 7.3               | 215          |
| 5  | Structural Determination and Interior Polarity of Self-Aggregates Prepared from Deoxycholic Acid-Modified Chitosan in Water. Macromolecules, 1998, 31, 378-383.                                                              | 2.2               | 209          |
| 6  | Optimization of thickness and morphology of active layer for high performance of<br>bulk-heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1118-1124.                                    | 3.0               | 174          |
| 7  | A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. Energy and Environmental Science, 2012, 5, 6857.                                                           | 15.6              | 171          |
| 8  | Fluorination on both D and A units in D–A type conjugated copolymers based on difluorobithiophene<br>and benzothiadiazole for highly efficient polymer solar cells. Energy and Environmental Science, 2015,<br>8, 2427-2434. | 15.6              | 168          |
| 9  | Semi-crystalline random conjugated copolymers with panchromatic absorption for highly efficient polymer solar cells. Energy and Environmental Science, 2013, 6, 3301.                                                        | 15.6              | 165          |
| 10 | Facile Method to Functionalize Graphene Oxide and Its Application to Poly(ethylene) Tj ETQq0 0 0 rgBT /Overloch                                                                                                              | ء 10 Tf 50<br>4.0 | 382 Td (tere |
| 11 | Fluorination of Polythiophene Derivatives for High Performance Organic Photovoltaics. Chemistry of<br>Materials, 2014, 26, 4214-4220.                                                                                        | 3.2               | 142          |
| 12 | Physicochemical Characteristics of Self-Aggregates of Hydrophobically Modified Chitosans. Langmuir, 1998, 14, 2329-2332.                                                                                                     | 1.6               | 141          |
| 13 | Degradation and stability of polymer-based solar cells. Journal of Materials Chemistry, 2012, 22, 24265.                                                                                                                     | 6.7               | 134          |
| 14 | Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. Journal of Materials Chemistry, 2009, 19, 1483.                            | 6.7               | 125          |
| 15 | Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. Journal of Materials Chemistry, 2010, 20, 3287.                                                      | 6.7               | 116          |
| 16 | Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol). Carbon, 2007, 45, 1051-1057.                                                                 | 5.4               | 111          |
| 17 | Comparison of Two Dâ <sup>~^</sup> A Type Polymers with Each BeingÂFluorinated on D and A Unit for High<br>Performance Solar Cells. Advanced Functional Materials, 2015, 25, 120-125.                                        | 7.8               | 108          |
|    |                                                                                                                                                                                                                              |                   |              |

18Low-Bandgap Small Molecules as Non-Fullerene Electron Acceptors Composed of Benzothiadiazole<br/>and Diketopyrrolopyrrole for All Organic Solar Cells. Chemistry of Materials, 2015, 27, 6038-6043.3.2107

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Enhanced Performance and Air Stability of Polymer Solar Cells by Formation of a Selfâ€Assembled<br>Buffer Layer from Fullereneâ€Endâ€Capped Poly(ethylene glycol). Advanced Materials, 2011, 23, 1782-1787.                                                     | 11.1 | 106       |
| 20 | Structural characterization and surface modification of sulfonated<br>polystyrene–(ethylene–butylene)–styrene triblock proton exchange membranes. Journal of Membrane<br>Science, 2003, 214, 245-257.                                                           | 4.1  | 105       |
| 21 | Recent progress in high efficiency polymer solar cells by rational design and energy level tuning of<br>low bandgap copolymers with various electron-withdrawing units. Organic Electronics, 2016, 31,<br>149-170.                                              | 1.4  | 103       |
| 22 | Morphology control of a polythiophene–fullerene bulk heterojunction for enhancement of the<br>high-temperature stability of solar cell performance by a new donor–acceptor diblock copolymer.<br>Nanotechnology, 2010, 21, 105201.                              | 1.3  | 92        |
| 23 | High-Efficiency Polymer Solar Cells with Water-Soluble and Self-Doped Conducting Polyaniline Graft<br>Copolymer as Hole Transport Layer. Journal of Physical Chemistry C, 2010, 114, 633-637.                                                                   | 1.5  | 91        |
| 24 | Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly( <i>N</i> -isopropylacrylamide). Macromolecules, 2009, 42, 2756-2761.                                                                    | 2.2  | 83        |
| 25 | Enhanced device performance of polymer solar cells by planarization of quinoxaline derivative in a<br>low-bandgap polymer. Journal of Materials Chemistry, 2011, 21, 8583.                                                                                      | 6.7  | 83        |
| 26 | Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power<br>Conversion Efficiency. Advanced Materials, 2015, 27, 7462-7468.                                                                                                | 11.1 | 82        |
| 27 | Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer. Chemical Communications, 2015, 51, 17413-17416.                                                                                         | 2.2  | 76        |
| 28 | A Water-Soluble and Self-Doped Conducting Polypyrrole Graft Copolymer. Macromolecules, 2005, 38, 1044-1047.                                                                                                                                                     | 2.2  | 75        |
| 29 | Annealingâ€Free High Efficiency and Large Area Polymer Solar Cells Fabricated by a Roller Painting<br>Process. Advanced Functional Materials, 2010, 20, 2355-2363.                                                                                              | 7.8  | 73        |
| 30 | Two different mechanisms of CH3NH3PbI3film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 23964-23972.                                               | 5.2  | 72        |
| 31 | A Monte Carlo Simulation for the Micellization of ABA- and BAB-Type Triblock Copolymers in a Selective Solvent. Macromolecules, 2001, 34, 7210-7218.                                                                                                            | 2.2  | 70        |
| 32 | Synthesis and Micellization of Star-Shaped Poly(ethylene glycol)-block-Poly(É›-caprolactone).<br>Macromolecular Chemistry and Physics, 2004, 205, 1684-1692.                                                                                                    | 1.1  | 70        |
| 33 | A Small Molecule Composed of Dithienopyran and Diketopyrrolopyrrole as Versatile Electron Donor<br>Compatible with Both Fullerene and Nonfullerene Electron Acceptors for High Performance Organic<br>Solar Cells. Chemistry of Materials, 2015, 27, 4865-4870. | 3.2  | 70        |
| 34 | Diketopyrrolopyrrole-based small molecules with simple structure for high VOC organic photovoltaics. Organic Electronics, 2012, 13, 3060-3066.                                                                                                                  | 1.4  | 68        |
| 35 | Effects of Shear on Melt Exfoliation of Clay in Preparation of Nylon 6/Organoclay Nanocomposites.<br>Polymer Journal, 2002, 34, 103-111.                                                                                                                        | 1.3  | 67        |
| 36 | Synthesis of pyridine-capped diketopyrrolopyrrole and its use as a building block of low band-gap polymers for efficient polymer solar cells. Chemical Communications, 2013, 49, 8495.                                                                          | 2.2  | 67        |

| #  | Article                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b′]dithiophene for high performance<br>organic photovoltaics. Chemical Communications, 2012, 48, 6933.                                                                                                                  | 2.2  | 66        |
| 38 | Exfoliated Nanocomposite from Polyaniline Graft Copolymer/Clay. Macromolecules, 2004, 37, 9850-9854.                                                                                                                                                                                  | 2.2  | 64        |
| 39 | Ï€-Extended low bandgap polymer based on isoindigo and thienylvinylene for high performance<br>polymer solar cells. Energy and Environmental Science, 2014, 7, 650-654.                                                                                                               | 15.6 | 62        |
| 40 | Conjugated Random Copolymers Consisting of Pyridine- and Thiophene-Capped Diketopyrrolopyrrole<br>as Co-Electron Accepting Units To Enhance both <i>J</i> <sub>SC</sub> and <i>V</i> <sub>OC</sub> of<br>Polymer Solar Cells. Macromolecules, 2015, 48, 7836-7842.                    | 2.2  | 62        |
| 41 | Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. Journal of Materials Chemistry C, 2013, 1, 1870.                                                                                                    | 2.7  | 61        |
| 42 | Multi-walled carbon nanotubes covalently attached with poly(3-hexylthiophene) for enhancement of<br>field-effect mobility of poly(3-hexylthiophene)/multi-walled carbon nanotube composites. Carbon,<br>2010, 48, 389-395.                                                            | 5.4  | 58        |
| 43 | Anthraceneâ€Based Medium Bandgap Conjugated Polymers for High Performance Polymer Solar Cells<br>Exceeding 8% PCE Without Additive and Annealing Process. Advanced Energy Materials, 2015, 5,<br>1500065.                                                                             | 10.2 | 57        |
| 44 | A strategy to enhance both VOC and JSC of A–D–A type small molecules based on diketopyrrolopyrrole for high efficient organic solar cells. Organic Electronics, 2013, 14, 1621-1628.                                                                                                  | 1.4  | 55        |
| 45 | Synthesis of Polythiophene-graft-PMMA and Its Role as Compatibilizer for<br>Poly(styrene-co-acrylonitrile)/MWCNT Nanocomposites. Macromolecules, 2007, 40, 3708-3713.                                                                                                                 | 2.2  | 53        |
| 46 | Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor.<br>Carbon, 2013, 63, 202-209.                                                                                                                                                      | 5.4  | 53        |
| 47 | The effect of different chalcogenophenes in isoindigo-based conjugated copolymers on photovoltaic properties. Polymer Chemistry, 2014, 5, 6545-6550.                                                                                                                                  | 1.9  | 51        |
| 48 | A novel water-soluble and self-doped conducting polyaniline graft copolymerElectronic<br>supplementary information (ESI) available: schematic diagrams; XPS and FTIR spectra; GPC profile. See<br>http://www.rsc.org/suppdata/cc/b3/b309346h/. Chemical Communications, 2003, , 2768. | 2.2  | 50        |
| 49 | A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells. RSC Advances, 2016, 6, 19923-19927.                                                                                                                         | 1.7  | 50        |
| 50 | Efficiency enhancement of P3HT/PCBM bulk heterojunction solar cells by attaching zinc phthalocyanine to the chain-end of P3HT. Journal of Materials Chemistry, 2011, 21, 17209.                                                                                                       | 6.7  | 49        |
| 51 | Design and Synthesis of a New pH Sensitive Polymeric Sensor Using Fluorescence Resonance Energy<br>Transfer. Chemistry of Materials, 2005, 17, 6213-6215.                                                                                                                             | 3.2  | 45        |
| 52 | Highly Crystalline Low Band Gap Polymer Based on Thieno[3,4- <i>c</i> ]pyrrole-4,6-dione for<br>High-Performance Polymer Solar Cells with a >400 nm Thick Active Layer. ACS Applied Materials<br>& Interfaces, 2015, 7, 13666-13674.                                                  | 4.0  | 44        |
| 53 | Development of Selfâ€Doped Conjugated Polyelectrolytes with Controlled Work Functions and<br>Application to Hole Transport Layer Materials for Highâ€Performance Organic Solar Cells. Advanced<br>Materials Interfaces, 2016, 3, 1500703.                                             | 1.9  | 41        |
| 54 | Chargeâ€Transport Tuning of Solutionâ€Processable Graphene Nanoribbons by Substitutional Nitrogen<br>Doping. Macromolecular Chemistry and Physics, 2013, 214, 2768-2773.                                                                                                              | 1.1  | 40        |

| #  | Article                                                                                                                                                                                                                                                       | IF                | CITATIONS          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 55 | Synthesis and photovoltaic properties of low-bandgap alternating copolymers consisting of<br>3-hexylthiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline derivatives. Organic Electronics, 2010, 11,<br>846-853.                                                | 1.4               | 39                 |
| 56 | CH3NH3PbI3 crystal orientation and photovoltaic performance of planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 77-84.                                                                                        | 3.0               | 39                 |
| 57 | Preparation of new proton exchange membrane based on self-assembly of Poly(styrene-co-styrene) Tj ETQq1 1 0.<br>2009, 188, 127-131.                                                                                                                           | 784314 rg<br>4.0  | BT /Overloc<br>35  |
| 58 | Noncovalent functionalization of multiwalled carbon nanotubes using graft copolymer with<br>naphthalene and its application as a reinforcing filler for poly(styreneâ€ <i>co</i> â€acrylonitrile).<br>Journal of Polymer Science Part A, 2010, 48, 4184-4191. | 2.5               | 35                 |
| 59 | Complex formation between plasmid DNA and self-aggregates of deoxycholic acid-modified chitosan.<br>Polymer, 2005, 46, 8107-8112.                                                                                                                             | 1.8               | 33                 |
| 60 | Graphene-based electrodes for flexible electronics. Polymer International, 2015, 64, 1676-1684.                                                                                                                                                               | 1.6               | 33                 |
| 61 | A Monte Carlo simulation for the micellization of ABA- and BAB-type triblock copolymers in a selective solvent. II. Effects of the block composition. Journal of Chemical Physics, 2002, 117, 8565-8572.                                                      | 1.2               | 32                 |
| 62 | A New pH Sensor Using the Fluorescence Quenching of Carbon Nanotubes. Macromolecular Rapid Communications, 2008, 29, 1798-1803.                                                                                                                               | 2.0               | 32                 |
| 63 | Enhanced performance of polymer solar cells with PSSAâ^'gâ^'PANI/Graphene oxide composite as hole transport layer. Solar Energy Materials and Solar Cells, 2014, 130, 599-604.                                                                                | 3.0               | 32                 |
| 64 | Conformational Analysis in ABA Triblock Melts by Monte Carlo Simulation. Macromolecules, 2002, 35, 2413-2416.                                                                                                                                                 | 2.2               | 31                 |
| 65 | Synthesis and Crystallization Behavior of Poly(m-methylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 347 To<br>36, 4051-4059.                                                                                                                              | d (2,6-nap<br>2.2 | hthalate-co-<br>31 |
| 66 | Drug release behavior of poly(ε-caprolactone)-b-Poly(acrylic acid) Shell Crosslinked Micelles below<br>the Critical Micelle Concentration. Macromolecular Research, 2005, 13, 397-402.                                                                        | 1.0               | 31                 |
| 67 | Highly Ordered Poly(3-hexylthiophene) Rod Polymers via Block Copolymer Self-Assembly.<br>Macromolecules, 2011, 44, 1771-1774.                                                                                                                                 | 2.2               | 30                 |
| 68 | Plasticization Behavior of Polyacrylonitrile and Characterization of Acrylic Fiber Prepared from the Plasticized Melt Polymer Journal, 1992, 24, 841-848.                                                                                                     | 1.3               | 29                 |
| 69 | A low band-gap copolymer composed of thienyl substituted anthracene and diketopyrrolopyrrole<br>compatible with multiple electron acceptors for high efficiency polymer solar cells. Polymer<br>Chemistry, 2015, 6, 4013-4019.                                | 1.9               | 26                 |
| 70 | The effects of physical aging on the thermal and mechanical properties of an epoxy polymer. Polymer Engineering and Science, 1991, 31, 239-244.                                                                                                               | 1.5               | 25                 |
| 71 | Micellization behavior of π-shaped copolymers in a selective solvent: A Brownian dynamics simulation approach. Journal of Chemical Physics, 2003, 119, 5705-5710.                                                                                             | 1.2               | 25                 |
| 72 | Density Functional Study on the Regioselectivity of Styrene Polymerization with anansa-Metallocene<br>Catalyst. Organometallics, 2006, 25, 1144-1150.                                                                                                         | 1.1               | 24                 |

| #  | Article                                                                                                                                                                                       | IF                | CITATIONS           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 73 | Synthesis of thermally stable organosilicate for exfoliated poly(ethylene terephthalate)<br>nanocomposite with superior tensile properties. Macromolecular Research, 2007, 15, 178-184.       | 1.0               | 24                  |
| 74 | Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of<br>High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 10961-10967.          | 4.0               | 22                  |
| 75 | Effect of matrix viscosity on clay dispersion in preparation of polymer/organoclay nanocomposites.<br>Fibers and Polymers, 2002, 3, 103-108.                                                  | 1.1               | 20                  |
| 76 | Isoindigo-based conjugated polymer for high-performance organic solar cell with a high VOC of 1.06†V<br>as processed from non-halogenated solvent. Dyes and Pigments, 2019, 161, 113-118.     | 2.0               | 20                  |
| 77 | Crystallization-induced sequential reordering in poly(trimethylene terephthalate)/polycarbonate<br>blends. Macromolecular Research, 2002, 10, 145-149.                                        | 1.0               | 19                  |
| 78 | Synthesis and isodimorphic cocrystallization behavior of poly(1,4-cyclohexylenedimethylene) Tj ETQq0 0 0 rgBT /<br>Science, Part B: Polymer Physics, 2004, 42, 177-187.                       | Overlock<br>2.4   | 10 Tf 50 547<br>18  |
| 79 | Synthesis and photophysical properties of soluble lowâ€bandgap thienothiophene polymers with<br>various alkyl sideâ€chain lengths. Journal of Polymer Science Part A, 2011, 49, 3260-3271.    | 2.5               | 18                  |
| 80 | Synthesis of thieno[3,4-d]thiazole-based conjugated polymers and HOMO level tuning for high VOC photovoltaic cell. Organic Electronics, 2012, 13, 1322-1328.                                  | 1.4               | 18                  |
| 81 | Phase behavior of poly(É›-caprolactone)/ poly (vinylidene fluoride) blends. Polymer International, 1992, 29, 173-178.                                                                         | 1.6               | 17                  |
| 82 | Preparation and characterization of conducting poly(acryloyl chloride)-g- polypyrrole copolymer.<br>Polymers for Advanced Technologies, 2002, 13, 670-677.                                    | 1.6               | 17                  |
| 83 | Synthesis of a low bandgap polymer based on a thiadiazolo-indolo[3,2-b]carbazole derivative for enhancement of open circuit voltage of polymer solar cells. Polymer Chemistry, 2012, 3, 2928. | 1.9               | 17                  |
| 84 | Thermal stability of polyacrylonitrile in the melt formed by hydration. Journal of Applied Polymer<br>Science, 1992, 46, 1793-1798.                                                           | 1.3               | 16                  |
| 85 | Cocrystallization of poly(1,4-cyclohexylenedimethylene terephthalate-co-hexamethylene) Tj ETQq1 1 0.784314 r                                                                                  | gBT /Overl<br>1.0 | lock 10 Tf 50       |
| 86 | Synthesis of fluorinated amphiphilic triblock copolymer and its application in high temperature PEM fuel cells. Journal of Materials Chemistry, 2012, 22, 7187.                               | 6.7               | 16                  |
| 87 | Monte Carlo simulation of copolymerization by ester interchange reaction in miscible polyester blends. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1637-1645.              | 2.4               | 15                  |
| 88 | Synthesis, structure, and thermal property of poly(trimethylene terephthalate-co-trimethylene) Tj ETQq0 0 0 rgB                                                                               | Г /Qverloc<br>1.1 | k 10 Tf 50 14       |
| 89 | Miscibility of poly( $\hat{l}\mu$ -caprolactone) and of poly(styrene-co-acrylonitrile) with poly(styrene-co-acrylic) Tj ETQq1 1 (                                                             | ).784314<br>2.4   | rgBT /Overloc<br>14 |
|    |                                                                                                                                                                                               |                   |                     |

90 Effect of chain topology of block copolymer on micellization: Ring versus linear block copolymer. Journal of Chemical Physics, 2003, 118, 8468-8475.

1.2 14

| #   | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Polythiophene-graft-PMMA as a dispersing agent for multi-walled carbon nanotubes in organic solvent. Macromolecular Research, 2008, 16, 749-752.                                                                                                                                     | 1.0 | 14        |
| 92  | Synthesis of poly(3-hexylthiophene)-graft-poly(t-butyl acrylate-co-acrylic acid) and its role of compatibilizer for enhancement of mechanical and electrical properties of Nylon 66/multi-walled carbon nanotube composites. Composites Science and Technology, 2009, 69, 2205-2211. | 3.8 | 14        |
| 93  | Ternary blends of phenoxy/SAN/poly(-É›-caprolactone). Journal of Polymer Science, Part B: Polymer<br>Physics, 1994, 32, 1321-1328.                                                                                                                                                   | 2.4 | 13        |
| 94  | Structure-property relationships of copolyamides. I. Thermal properties and crystallization. Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 673-687.                                                                                                                 | 2.4 | 12        |
| 95  | Miscibility of Poly(vinylidene fluoride) and Poly(styrene-co-methyl methacrylate) Blends. Polymer<br>Journal, 1991, 23, 1243-1247.                                                                                                                                                   | 1.3 | 12        |
| 96  | Effect of solvent or hydrophilic polymer on the hydration melting behavior of polyacrylonitrile.<br>Journal of Applied Polymer Science, 1994, 54, 457-462.                                                                                                                           | 1.3 | 12        |
| 97  | Segmental motions and associated dynamic mechanical thermal properties of a series of copolymers<br>based on poly(hexamethylene terephthalate) and poly(1,4-cyclohexylenedimethylene terephthalate).<br>Macromolecular Research, 2006, 14, 416-423.                                  | 1.0 | 12        |
| 98  | Synthesis of 6H-benzo[c]chromene as a new electron-rich building block of conjugated alternating copolymers and its application to polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 14146-14153.                                                                      | 5.2 | 12        |
| 99  | Effect of fluorine substitution on photovoltaic performance of DPP-based copolymer. Organic Electronics, 2015, 20, 125-131.                                                                                                                                                          | 1.4 | 12        |
| 100 | Charge transport in amorphous low bandgap conjugated polymer/fullerene films. Journal of Applied Physics, 2012, 111, 043710.                                                                                                                                                         | 1.1 | 11        |
| 101 | Phase transformation of poly(trimethylene terephthalate) in crystalline state: An atomistic modeling approach. Fibers and Polymers, 2000, 1, 18-24.                                                                                                                                  | 1.1 | 10        |
| 102 | Analysis of the elastic deformation of semicrystalline poly(trimethylene terephthalate) by the atomistic-continuum model. Journal of Chemical Physics, 2001, 114, 8159-8164.                                                                                                         | 1.2 | 10        |
| 103 | Crystal Structure Determination of Poly(1,4-trans-cylcohexylenedimethylene 2,6-naphthalate) by X-ray<br>Diffraction and Molecular Modeling. Macromolecules, 2003, 36, 5201-5207.                                                                                                     | 2.2 | 10        |
| 104 | A thermoanalytical study on solid-state cure of poly(p-phenylene sulfide). Polymer Engineering and<br>Science, 1994, 34, 81-85.                                                                                                                                                      | 1.5 | 9         |
| 105 | Origin of miscibility-induced sequential reordering and crystallization-induced sequential reordering<br>in binary copolyesters: a Monte Carlo simulation. Journal of Polymer Science, Part B: Polymer Physics,<br>2001, 39, 1337-1347.                                              | 2.4 | 9         |
| 106 | A New Polymeric pH Sensor Based on Photophysical Property of Gold Nanoparticle and pH Sensitivity of Poly(sulfadimethoxine methacrylate). Macromolecular Chemistry and Physics, 2010, 211, 1054-1060.                                                                                | 1.1 | 9         |
| 107 | Compatibility of nylon 6 and PMMA–oligoamide graft copolymer. Journal of Applied Polymer Science,<br>1984, 29, 567-576.                                                                                                                                                              | 1.3 | 8         |
| 108 | Phase behavior of ternary blends of diblock copolymer with homopolymer blends. Journal of<br>Chemical Physics, 2002, 117, 9920-9926.                                                                                                                                                 | 1.2 | 8         |

| #   | Article                                                                                                                                                                                                                                       | IF               | CITATIONS  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| 109 | Synthesis and physical properties of pH-sensitive semi-IPN hydrogels based on poly(dimethylaminoethyl) Tj ETQq1                                                                                                                               | 1,0.78431<br>1.1 | 14 rgBT /0 |
| 110 | Miscibility of poly(methyl methacrylate-co-vinyl pyridine) and poly(butyl acrylate-co-acrylic acid)<br>blends. Polymer Bulletin, 1989, 21, 183.                                                                                               | 1.7              | 7          |
| 111 | Sol-Gel transition and crystallization kinetics of ultra-high molecular weight polyethylene/decalin solution. Polymer Engineering and Science, 1989, 29, 1569-1573.                                                                           | 1.5              | 7          |
| 112 | Preparation of SAN/silicate nanocomposites using PMMA as a compatibilizer. Fibers and Polymers, 2003, 4, 97-101.                                                                                                                              | 1.1              | 7          |
| 113 | Effect of the vertical composition gradient of active layer on the performance of bulk-heterojunction organic photovoltaic cell. Journal of Applied Physics, 2011, 110, .                                                                     | 1.1              | 7          |
| 114 | Phase behavior of poly(ethylene oxide) and sulfonated polystyrene blends with and without solvent.<br>Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 759-764.                                                                 | 2.4              | 6          |
| 115 | Effect of alkyl chain length on thermochromism of novel nitro compounds. Fibers and Polymers, 2007, 8, 234-236.                                                                                                                               | 1.1              | 6          |
| 116 | Optimization of molecular structure of polythiophene-graft-PMMA for effective compatibilization of SAN/MWCNT composite with superior mechanical properties. Fibers and Polymers, 2008, 9, 544-550.                                            | 1.1              | 6          |
| 117 | Structure-property relationships of copolyamides. II. crystal structure of drawn copolyamide films.<br>Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 595-601.                                                                | 2.4              | 4          |
| 118 | Homogenization process caused by competition between phase separation and ester-interchange<br>reactions in immiscible polyester blends: A Monte Carlo simulation. Journal of Polymer Science, Part<br>B: Polymer Physics, 2000, 38, 590-598. | 2.4              | 4          |
| 119 | Morphologies of Binary AB/AC Diblock Copolymer Blends. Macromolecular Chemistry and Physics, 2002, 203, 2188-2195.                                                                                                                            | 1.1              | 4          |
| 120 | A molecular dynamics simulation on the self-assembly of ABC triblock copolymers. 2. Effects of block sequence. Fibers and Polymers, 2002, 3, 8-13.                                                                                            | 1.1              | 4          |
| 121 | Melting point depression and phase behavior of poly(ether-sulfone) and poly(ethylene oxide) blends:<br>Equation-of-state theory approach. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 37-54.                                  | 1.0              | 3          |
| 122 | Morphology and Rheological Properties of Poly(phenylene ether) and Polyamide-6 with a<br>Compatibilizer. International Journal of Polymeric Materials and Polymeric Biomaterials, 1993, 21,<br>37-44.                                         | 1.8              | 3          |
| 123 | Effects of competition between phase separation and ester interchange reactions on the phase<br>behavior in a phase-separated immiscible polyester blend: Monte carlo simulation. Fibers and Polymers,<br>2001, 2, 81-85.                     | 1.1              | 3          |
| 124 | The Equation of State Theory for Glass Transition Temperature in Miscible Polymer Blends Polymer<br>Journal, 1992, 24, 625-632.                                                                                                               | 1.3              | 3          |
| 125 | Effect of chemical structure on crystallization behavior of poly(phenylene alkylene dicarboxylate)<br>(PPAD). Journal of Applied Polymer Science, 1997, 66, 1575-1582.                                                                        | 1.3              | 2          |
| 126 | Phase behavior of reversibly associating star Copolymer-like polymer blends. Macromolecular<br>Research, 2002, 10, 18-23.                                                                                                                     | 1.0              | 2          |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A molecular dynamics simulation on the self-assembly of ABC triblock copolymers. 3. Effects of block composition in asymmetric triblock copolymers. Fibers and Polymers, 2003, 4, 15-19. | 1.1 | 2         |
| 128 | Thermodynamic properties and crystallization behavior of poly(p-phenylene succinate). Journal of<br>Applied Polymer Science, 1999, 73, 801-806.                                          | 1.3 | 1         |
| 129 | Origin of double melting behavior of poly(p-phenylene succinate). Journal of Polymer Science, Part B:<br>Polymer Physics, 2000, 38, 1868-1871.                                           | 2.4 | 1         |
| 130 | Effects of the nitrile group substitution on the gas separation properties of aromatic polyamide membranes. Fibers and Polymers, 2000, 1, 111-115.                                       | 1.1 | 0         |
| 131 | Secondary water pore formation for proton transport in a CIC exchanger revealed by an atomistic molecular dynamics simulation. Nature Precedings, 2008, , .                              | 0.1 | 0         |