Robert M Westervelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11096274/publications.pdf

Version: 2024-02-01

30 papers

1,591 citations

430874 18 h-index 26 g-index

30 all docs

30 docs citations

times ranked

30

2044 citing authors

#	Article	IF	CITATIONS
1	Portable NMR with Parallelism. Analytical Chemistry, 2020, 92, 2112-2120.	6.5	28
2	Imaging Andreev Reflection in Graphene. Nano Letters, 2020, 20, 4890-4894.	9.1	14
3	Imaging the flow of holes from a collimating contact in graphene. Semiconductor Science and Technology, 2020, 35, 09LT02.	2.0	1
4	New Advanced Electron Microscopy to Discover New Quantum Materials. Microscopy and Microanalysis, 2019, 25, 932-933.	0.4	0
5	Imaging electron motion in graphene. Semiconductor Science and Technology, 2017, 32, 024001.	2.0	11
6	Analysis of Scanned Probe Images for Magnetic Focusing in Graphene. Journal of Electronic Materials, 2017, 46, 3837-3841.	2.2	6
7	Imaging Cyclotron Orbits of Electrons in Graphene. Nano Letters, 2016, 16, 1690-1694.	9.1	68
8	Fabrication of Coaxial and Triaxial Atomic Force Microscope Imaging Probes. Materials Research Society Symposia Proceedings, 2014, 1712, 13.	0.1	0
9	New Microscopy – the Imaging of Quantum Materials. Microscopy and Microanalysis, 2014, 20, 1764-1765.	0.4	0
10	Programmable Hybrid Integrated Circuit/Microfluidic Chips. Biological and Medical Physics Series, 2013, , 23-43.	0.4	0
11	Imaging Universal Conductance Fluctuations in Graphene. ACS Nano, 2011, 5, 3622-3627.	14.6	18
12	Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires. Nanotechnology, 2011, 22, 185201.	2.6	19
13	Extracting the density profile of an electronic wave function in a quantum dot. Physical Review B, 2011, 84, .	3.2	29
14	Imaging coherent transport in graphene (part II): probing weak localization. Nanotechnology, 2010, 21, 274014.	2.6	43
15	A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips. Lab on A Chip, 2010, 10, 2937.	6.0	26
16	High-Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit/Microfluidic Chip. Journal of Microelectromechanical Systems, 2009, 18, 1220-1225.	2.5	26
17	Microwave dielectric heating of drops in microfluidic devices. Lab on A Chip, 2009, 9, 1701.	6.0	86
18	The force acting on a superparamagnetic bead due to an applied magnetic field. Lab on A Chip, 2007, 7, 1294.	6.0	221

#	Article	IF	CITATIONS
19	Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab on A Chip, 2007, 7, 331-337.	6.0	136
20	CMOS-based Magnetic Cell Manipulation System. Integrated Circuits and Systems, 2007, , 103-144.	0.2	1
21	Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices, 2006, 8, 299-308.	2.8	348
22	Multiple-scattering theory for two-dimensional electron gases in the presence of spin-orbit coupling. Physical Review B, 2006, 73, .	3.2	25
23	Imaging a Single-Electron Quantum Dot. Nano Letters, 2005, 5, 223-226.	9.1	77
24	Magnetic and Electric Manipulation of a Single Cell in Fluid. Materials Research Society Symposia Proceedings, 2004, 820, 36.	0.1	6
25	Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria Using Microelectromagnets Arrays. Nano Letters, 2004, 4, 995-998.	9.1	177
26	Imaging Electron Flow. Physics Today, 2003, 56, 47-52.	0.3	55
27	Fabrication of GaAs/AlGaAs high electron mobility transistors with 250 nm gates using conformal phase shift lithography. Sensors and Actuators A: Physical, 2000, 86, 122-126.	4.1	7
28	The Use of Soft Lithography to Fabricate Arrays of Schottky Diodes. Advanced Materials, 1998, 10, 574-577.	21.0	29
29	Collective dynamics of coupled oscillators with random pinning. Physica D: Nonlinear Phenomena, 1989, 36, 23-50.	2.8	89
30	Predicted power laws for delayed switching of charge-density waves. Physical Review B, 1989, 40, 10501-10508.	3.2	45