Xiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1109102/publications.pdf

Version: 2024-02-01

471509 361022 1,751 35 17 35 citations h-index g-index papers 36 36 36 3325 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4766-4773.	3.5	17
2	A UV to NIR Si Wavelength Sensor With Simple Geometry and Good Resolution. IEEE Transactions on Electron Devices, 2022, 69, 2457-2461.	3.0	3
3	Modulation of recombination zone position for white perovskite/organic emitter hybrid light-emitting devices. Applied Physics Letters, 2022, 120, .	3.3	1
4	Micro-Nanometer Particle Composition and Functional Design of Surface Nano-Structured Ammonium Polyphosphate and Its Application in Intumescent Flame-Retardant Polypropylene. Nanomaterials, 2022, 12, 606.	4.1	4
5	Binding interaction of 5-amino-2-mercaptobenzimidazole with Au-TiO ₂ : inhibition of switch-on fluorescence. Inorganic and Nano-Metal Chemistry, 2022, 52, 842-847.	1.6	1
6	Wavelength-Tunable Multispectral Photodetector With Both Ultraviolet and Near-Infrared Narrowband Detection Capability. IEEE Transactions on Electron Devices, 2022, 69, 3258-3261.	3.0	5
7	Cu Atoms-assisted rapid fabrication of graphene/Al composites with tailored strain-delocalization effect by spark plasma sintering. Materials Research Letters, 2022, 10, 567-574.	8.7	7
8	Enhanced photocatalytic and photodynamic activity of chitosan and garlic loaded CdO–TiO2 hybrid bionanomaterials. Scientific Reports, 2021, 11, 20790.	3.3	12
9	Biomaterial (Garlic and Chitosan)-Doped WO ₃ -TiO ₂ Hybrid Nanocomposites: Their Solar Light Photocatalytic and Antibacterial Activities. ACS Omega, 2020, 5, 31673-31683.	3.5	15
10	Medium Energy Carbon and Nitrogen Ion Beam Induced Modifications in Charge Transport, Structural and Optical Properties of Ni/Pd/n-GaN Schottky Barrier Diodes. Materials, 2020, 13, 1299.	2.9	1
11	Silver–Bismuth Bilayer Anode for Perovskite Nanocrystal Light-Emitting Devices. Journal of Physical Chemistry Letters, 2020, 11, 3853-3859.	4.6	12
12	Color-Tunable, Spectra-Stable Flexible White Top-Emitting Organic Light-Emitting Devices Based on Alternating Current Driven and Dual-Microcavity Technology. ACS Photonics, 2019, 6, 2350-2357.	6.6	23
13	Preparation and characterization of core-shell type Ag@SiO2 nanoparticles for photodynamic cancer therapy. Photodiagnosis and Photodynamic Therapy, 2019, 28, 324-329.	2.6	21
14	An efficient and stable hybrid organic light-emitting device based on an inorganic metal oxide hole transport layer and an electron transport layer. Journal of Materials Chemistry C, 2019, 7, 1991-1998.	5.5	13
15	Novel Green Biomimetic Approach for Synthesis of ZnO-Ag Nanocomposite; Antimicrobial Activity against Food-borne Pathogen, Biocompatibility and Solar Photocatalysis. Scientific Reports, 2019, 9, 8303.	3.3	129
16	Review of mechanisms and deformation behaviors in 4D printing. International Journal of Advanced Manufacturing Technology, 2019, 105, 4633-4649.	3.0	48
17	Efficient ITO-free organic light-emitting devices with dual-functional PSS-rich PEDOT:PSS electrode by enhancing carrier balance. Journal of Materials Chemistry C, 2019, 7, 5426-5432.	5.5	62
18	Dry-Coated Graphite onto Sandpaper for Triboelectric Nanogenerator as an Active Power Source for Portable Electronics. Nanomaterials, 2019, 9, 1585.	4.1	20

#	Article	IF	CITATIONS
19	Inâ∈Planarâ∈Electrodes Organic Lightâ∈Emitting Devices for Smart Lighting Applications. Advanced Optical Materials, 2019, 7, 1800857.	7.3	17
20	Efficient and angle-stable white top-emitting organic light emitting devices with patterned quantum dots down-conversion films. Organic Electronics, 2018, 56, 46-50.	2.6	18
21	Hybrid organic light-emitting device based on ultrasonic spray-coating molybdenum trioxide transport layer with low turn-on voltage, improved efficiency & amp; stability. Organic Electronics, 2018, 52, 264-271.	2.6	10
22	Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea. Applied Energy, 2018, 224, 510-526.	10.1	36
23	Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2018, 132, 169-187.	13.7	135
24	A Tunable Nanoimprint System to Create New Features. Macromolecular Materials and Engineering, 2018, 303, 1800257.	3.6	3
25	Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer. Organic Electronics, 2018, 62, 407-411.	2.6	13
26	Two-dimensional-growth small molecular hole-transporting layer by ultrasonic spray coating for organic light-emitting devices. Organic Electronics, 2017, 47, 181-188.	2.6	9
27	Efficiently alternating current driven tandem organic light-emitting devices with $(Ag/4,7-diphenyl-1,10-phenanthroline)$ n interconnecting layers. Applied Physics Letters, 2017, 111, .	3.3	8
28	Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement. Nano Letters, 2017, 17, 6847-6854.	9.1	45
29	Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices. Scientific Reports, 2016, 6, 37042.	3.3	30
30	Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438-4462.	2.2	464
31	Electrospun Fe2O3–carbon composite nanofibers as durable anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10835.	10.3	91
32	Graphene's potential in materials science and engineering. RSC Advances, 2014, 4, 28987-29011.	3.6	60
33	Hierarchical porous nickel oxide–carbon nanotubes as advanced pseudocapacitor materials for supercapacitors. Chemical Physics Letters, 2013, 561-562, 68-73.	2.6	43
34	Electrospun TiO ₂ –Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 14780-14788.	3.1	181
35	Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale, 2012, 4, 1707.	5.6	194