Julienne C Stroeve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108824/publications.pdf

Version: 2024-02-01

61687 43601 14,797 97 45 95 citations h-index g-index papers 102 102 102 12237 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shine a light: Under-ice light and its ecological implications in a changing Arctic Ocean. Ambio, 2022, 51, 307-317.	2.8	18
2	Overview of the MOSAiC expedition: Snow and sea ice. Elementa, 2022, 10, .	1.1	91
3	Reduced Sea Ice Enhances Intensification of Winter Storms over the Arctic Ocean. Journal of Climate, 2022, 35, 3353-3370.	1.2	9
4	Under-Ice Light Field in the Western Arctic Ocean During Late Summer. Frontiers in Earth Science, 2022, 9, .	0.8	6
5	Freshwater Input and Vertical Mixing in the Canada Basin's Seasonal Halocline: 1975 versus 2006–12. Journal of Physical Oceanography, 2022, 52, 1383-1396.	0.7	2
6	Increasing Multiyear Sea Ice Loss in the Beaufort Sea: A New Export Pathway for the Diminishing Multiyear Ice Cover of the Arctic Ocean. Geophysical Research Letters, 2022, 49, .	1.5	10
7	Network connectivity between the winter Arctic Oscillation and summer sea ice in CMIP6 models and observations. Cryosphere, 2022, 16, 1653-1673.	1.5	4
8	Extreme Precipitation in the Eastern Canadian Arctic and Greenland: An Evaluation of Atmospheric Reanalyses. Frontiers in Environmental Science, 2022, 10, .	1.5	6
9	Snowfall and snow accumulation during the MOSAiC winter and spring seasons. Cryosphere, 2022, 16, 2373-2402.	1.5	17
10	A baseline evaluation of atmospheric and river discharge conditions in the Hudson Bay Complex during 2016â \in 2018. Elementa, 2021, 9, .	1.1	4
11	Sediment-laden sea ice in southern Hudson Bay: Entrainment, transport, and biogeochemical implications. Elementa, 2021, 9, .	1.1	12
12	Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval. Cryosphere, 2021, 15, 345-367.	1.5	26
13	A Multi-Sensor and Modeling Approach for Mapping Light Under Sea Ice During the Ice-Growth Season. Frontiers in Marine Science, 2021, 7, .	1.2	18
14	Arctic sea ice melt onset favored by an atmospheric pressure pattern reminiscent of the North American-Eurasian Arctic pattern. Climate Dynamics, 2021, 57, 1771-1787.	1.7	8
15	Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice. Cryosphere, 2021, 15, 1811-1822.	1.5	3
16	Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover. Cryosphere, 2021, 15, 2429-2450.	1.5	26
17	Arctic open-water periods are projected to lengthen dramatically by 2100. Communications Earth & Environment, 2021, 2, .	2.6	26
18	Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony. Cryosphere, 2021, 15, 3101-3118.	1.5	4

#	Article	IF	CITATIONS
19	Record winter winds in 2020/21 drove exceptional Arctic sea ice transport. Communications Earth $\&$ Environment, 2021, 2, .	2.6	12
20	Arctic rain on snow events: bridging observations to understand environmental and livelihood impacts. Environmental Research Letters, 2021, 16, 105009.	2.2	20
21	Simulated impacts of relative climate change and river discharge regulation on sea ice and oceanographic conditions in the Hudson Bay Complex. Elementa, 2021, 9, .	1.1	1
22	Surface Salinity Under Transitioning Ice Cover in the Canada Basin: Climate Model Biases Linked to Vertical Distribution of Fresh Water. Geophysical Research Letters, 2021, 48, e2021GL094739.	1.5	12
23	Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness. Cryosphere, 2021, 15, 4909-4927.	1.5	7
24	New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nature Communications, 2021, 12, 6765.	5.8	102
25	Sea-ice information and forecast needs for industry maritime stakeholders. Polar Geography, 2020, 43, 160-187.	0.8	24
26	A Bayesian Logistic Regression for Probabilistic Forecasts of the Minimum September Arctic Sea Ice Cover. Earth and Space Science, 2020, 7, e2020EA001176.	1.1	13
27	A Lagrangian Snowâ€Evolution System for Seaâ€Ice Applications (SnowModelâ€LG): Part I—Model Description. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015913.	1.0	60
28	A Lagrangian Snow Evolution System for Sea Ice Applications (SnowModel‣G): Part Il—Analyses. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015900.	1.0	39
29	Platelet Ice Under Arctic Pack Ice in Winter. Geophysical Research Letters, 2020, 47, e2020GL088898.	1.5	17
30	Snow and Ice Thickness Retrievals Using GNSS-R: Preliminary Results of the MOSAiC Experiment. Remote Sensing, 2020, 12, 4038.	1.8	29
31	Divergence of Arctic shrub growth associated with sea ice decline. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33334-33344.	3.3	43
32	Regional September Sea Ice Forecasting with Complex Networks and Gaussian Processes. Weather and Forecasting, 2020, 35, 793-806.	0.5	9
33	Sea Ice Roughness Overlooked as a Key Source of Uncertainty in CryoSatâ€2 Ice Freeboard Retrievals. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015820.	1.0	45
34	Machine learning approaches to retrieve pan-Arctic melt ponds from visible satellite imagery. Remote Sensing of Environment, 2020, 247, 111919.	4.6	23
35	Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to seaÂice thickness and seasonal growth rate estimates. Cryosphere, 2020, 14, 251-260.	1.5	26
36	Atmospheric Forcing Drives the Winter Sea Ice Thickness Asymmetry of Hudson Bay. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015756.	1.0	18

#	Article	IF	CITATIONS
37	Arctic Ocean Precipitation From Atmospheric Reanalyses and Comparisons With North Pole Drifting Station Records. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015415.	1.0	33
38	Surface-based Ku- and Ka-band polarimetric radar for sea ice studies. Cryosphere, 2020, 14, 4405-4426.	1.5	18
39	Physical length scales of wind-blown snow redistribution and accumulation on relatively smooth Arctic first-year sea ice. Environmental Research Letters, 2019, 14, 104003.	2.2	11
40	The polar regions in a 2°C warmer world. Science Advances, 2019, 5, eaaw9883.	4.7	289
41	Greenland monthly precipitation analysis from the Arctic System Reanalysis (ASR): 2000–2012. Polar Science, 2019, 19, 1-12.	0.5	19
42	Seasonal and Regional Manifestation of Arctic Sea Ice Loss. Journal of Climate, 2018, 31, 4917-4932.	1.2	288
43	Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards. Cryosphere, 2018, 12, 3551-3564.	1.5	60
44	Warm winter, thin ice?. Cryosphere, 2018, 12, 1791-1809.	1.5	41
45	The Trajectory Towards a Seasonally Ice-Free Arctic Ocean. Current Climate Change Reports, 2018, 4, 407-416.	2.8	70
46	Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 2018, 13, 103001.	2.2	594
47	Appreciation of 2017 GRL Peer Reviewers. Geophysical Research Letters, 2018, 45, 4494-4528.	1.5	0
48	The Arctic sea ice cover of 2016: aÂyear of record-low highs and higher-than-expected lows. Cryosphere, 2018, 12, 433-452.	1.5	56
49	Modulation of Sea Ice Melt Onset and Retreat in the Laptev Sea by the Timing of Snow Retreat in the West Siberian Plain. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8691-8707.	1.2	9
50	Skillful spring forecasts of September Arctic sea ice extent using passive microwave sea ice observations. Earth's Future, 2017, 5, 254-263.	2.4	45
51	Sea Ice Loss and Arctic Cyclone Activity from 1979 to 2014. Journal of Climate, 2017, 30, 4735-4754.	1.2	58
52	Ice and Snow Thickness Variability and Change in the High Arctic Ocean Observed by In Situ Measurements. Geophysical Research Letters, 2017, 44, 10,462.	1.5	37
53	Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere, 2017, 11, 65-79.	1.5	141
54	Investigating the local-scale influence of sea ice on Greenland surface melt. Cryosphere, 2017, 11, 2363-2381.	1.5	22

#	Article	IF	CITATIONS
55	Relating the Age of Arctic Sea Ice to its Thickness, as Measured during NASA's ICESat and IceBridge Campaigns. Remote Sensing, 2016, 8, 457.	1.8	54
56	400 predictions: the SEARCH Sea Ice Outlook 2008–2015. Polar Geography, 2016, 39, 274-287.	0.8	37
57	Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,463.	1.2	52
58	Atmospheric drivers of Greenland surface melt revealed by selfâ€organizing maps. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5095-5114.	1.2	36
59	The Impact of the Extreme Winter 2015/16 Arctic Cyclone on the Barents–Kara Seas. Monthly Weather Review, 2016, 144, 4279-4287.	0.5	98
60	Variability, trends, and predictability of seasonal sea ice retreat and advance in the <scp>C</scp> hukchi <scp>S</scp> ea. Journal of Geophysical Research: Oceans, 2016, 121, 7308-7325.	1.0	109
61	Observed Arctic sea-ice loss directly follows anthropogenic CO ₂ emission. Science, 2016, 354, 747-750.	6.0	389
62	Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biology Letters, 2016, 12, 20160466.	1.0	110
63	Using timing of ice retreat to predict timing of fall freezeâ€up in the Arctic. Geophysical Research Letters, 2016, 43, 6332-6340.	1.5	57
64	Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophysical Research Letters, 2016, 43, 6636-6642.	1.5	127
65	Melting ice, growing trade?. Elementa, 2016, 4, .	1.1	13
66	The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophysical Research Letters, 2015, 42, 4439-4446.	1.5	133
67	Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140159.	1.6	256
68	Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, 2015, 135, 119-132.	1.6	97
69	Improving Predictions of Arctic Sea Ice Extent. Eos, 2015, 96, .	0.1	23
70	Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. Cryosphere, 2014, 8, 1839-1854.	1.5	121
71	Future Arctic climate changes: Adaptation and mitigation time scales. Earth's Future, 2014, 2, 68-74.	2.4	224
72	Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013. Geophysical Research Letters, 2014, 41, 2411-2418.	1.5	154

#	Article	lF	CITATIONS
73	Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters, 2014, 41, 1216-1225.	1.5	531
74	Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 2013, 3, 581-586.	8.1	485
75	Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere, 2012, 6, 821-839.	1.5	327
76	Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. Journal of Geophysical Research, 2012, 117, .	3.3	136
77	Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 2012, 39, .	1.5	817
78	Simulated Siberian snow cover response to observed Arctic sea ice loss, 1979–2008. Journal of Geophysical Research, 2012, 117, .	3.3	35
79	The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 2012, 110, 1005-1027.	1.7	1,277
80	Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	149
81	Changing seasonal sea ice predictor relationships in a changing Arctic climate. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	68
82	Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	528
83	Solar partitioning in a changing Arctic sea-ice cover. Annals of Glaciology, 2011, 52, 192-196.	2.8	116
84	Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. Tellus, Series A: Dynamic Meteorology and Oceanography, 2011, 63, 653-663.	0.8	34
85	Tracking the Movement and Changing Surface Characteristics of Arctic Sea Ice. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 536-540.	2.3	61
86	The emergence of surface-based Arctic amplification. Cryosphere, 2009, 3, 11-19.	1.5	923
87	Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research, 2009, 114, .	3.3	517
88	Arctic Sea Ice Extent Plummets in 2007. Eos, 2008, 89, 13-14.	0.1	409
89	Comparison of sea-ice extent and ice-edge location estimates from passive microwave and enhanced-resolution scatterometer data. Annals of Glaciology, 2008, 48, 65-70.	2.8	49
90	Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Annals of Glaciology, 2007, 46, 428-434.	2.8	172

#	Article	IF	CITATIONS
91	Perspectives on the Arctic's Shrinking Sea-Ice Cover. Science, 2007, 315, 1533-1536.	6.0	1,123
92	Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 2007, 34, .	1.5	1,459
93	A younger, thinner Arctic ice cover: Increased potential for rapid, extensive seaâ€ice loss. Geophysical Research Letters, 2007, 34, .	1.5	593
94	A record minimum arctic sea ice extent and area in 2002. Geophysical Research Letters, 2003, 30, .	1.5	270
95	Assessment of Greenland albedo variability from the advanced very high resolution radiometer Polar Pathfinder data set. Journal of Geophysical Research, 2001, 106, 33989-34006.	3.3	41
96	A linear mixed effects model for seasonal forecasts of Arctic sea ice retreat. Polar Geography, 0, , 1-18.	0.8	1
97	Sub-kilometre scale distribution of snow depth on Arctic sea ice from Soviet drifting stations. Journal of Glaciology, 0, , 1-13.	1.1	1