Lorenzo Pavesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microring resonators with external optical feedback for time delay reservoir computing. Optics Express, 2022, 30, 522.	1.7	18
2	Interferometric method to estimate the eigenvalues of a non-Hermitian two-level optical system. Photonics Research, 2022, 10, 1134.	3.4	7
3	Noise effects on time delay reservoir computing using silicon microring resonators. , 2022, , .		1
4	A photonic complex perceptron for ultrafast data processing. Scientific Reports, 2022, 12, 4216.	1.6	7
5	Certified Quantum Random-Number Generator Based on Single-Photon Entanglement. Physical Review Applied, 2022, 17, .	1.5	3
6	Light induced memory in in-vitro neuronal cultures. , 2022, , .		0
7	On the response of the Taiji microresonator against small perturbation of the counter propagating mode. , 2022, , .		3
8	An integrated entangled photons source for mid-infrared ghost spectroscopy. , 2022, , .		0
9	Mitigating indistinguishability issues in photon pair sources by delayed-pump intermodal four wave mixing. Optics Express, 2022, 30, 12964.	1.7	5
10	PRECISE Photonic Hybrid Electromagnetic Solver. IEEE Photonics Journal, 2022, 14, 1-10.	1.0	0
11	High extinction ratio thermo-optic based reconfigurable optical logic gates for programmable PICs. AIP Advances, 2022, 12, 055304.	0.6	4
12	A Microring as a Reservoir Computing Node: Memory/Nonlinear Tasks and Effect of Input Non-Ideality. Journal of Lightwave Technology, 2022, 40, 5917-5926.	2.7	4
13	On the modeling of thermal and free carrier nonlinearities in silicon-on-insulator microring resonators. Optics Express, 2021, 29, 4363.	1.7	27
14	Near-ideal heralded single photons in silicon. , 2021, , .		0
15	Nonlinearity-Induced Reciprocity Breaking in a Single Nonmagnetic Taiji Resonator. Physical Review Applied, 2021, 15, .	1.5	13
16	A FEM Enhanced Transfer Matrix Method for Optical Grating Design. Journal of Lightwave Technology, 2021, 39, 3521-3530.	2.7	4
17	Electric Field Induced Second Harmonic Generation In Silicon Waveguides: the role of the disorder. , 2021, , .		0
18	Role of the bus waveguide in the nonlinear reciprocity breaking in a Taiji microresonator. , 2021, , .		0

#	Article	IF	CITATIONS
19	Influence of the bus waveguide on the linear and nonlinear response of a taiji microresonator. Optics Express, 2021, 29, 29615.	1.7	3
20	Reservoir computing based on a silicon microring and time multiplexing for binary and analog operations. Scientific Reports, 2021, 11, 15642.	1.6	31
21	Entropy certification of a realistic quantum random-number generator based on single-particle entanglement. Physical Review A, 2021, 104, .	1.0	6
22	Compact and Low-Insertion-Loss 1×N Power Splitter in Silicon Photonics. Journal of Lightwave Technology, 2021, 39, 6253-6259.	2.7	20
23	An analog electronic emulator of non-linear dynamics in optical microring resonators. Chaos, Solitons and Fractals, 2021, 153, 111410.	2.5	7
24	Experimental demonstration of reservoir computing with a silicon resonator and time multiplexing. , 2021, , .		0
25	Thirty Years in Silicon Photonics: A Personal View. Frontiers in Physics, 2021, 9, .	1.0	11
26	A silicon source of heralded single photons at 2 <i>μ</i> m. APL Photonics, 2021, 6, 126103.	3.0	11
27	On-chip heralded single photon sources. AVS Quantum Science, 2020, 2, .	1.8	32
28	An optical chip for self-testing quantum random number generation. APL Photonics, 2020, 5, .	3.0	14
29	Singleâ€Particle Entanglement. Advanced Quantum Technologies, 2020, 3, 2000014.	1.8	23
30	Robust Geometries for Second-Harmonic-Generation in Microrings Exhibiting a 4-Bar Symmetry. Applied Sciences (Switzerland), 2020, 10, 9047.	1.3	0
31	Bell-inequality violation by entangled single-photon states generated from a laser, an LED, or a halogen lamp. Physical Review A, 2020, 102, .	1.0	7
32	Near-ideal spontaneous photon sources in silicon quantum photonics. Nature Communications, 2020, 11, 2505.	5.8	94
33	Structures and Methods for Fully-Integrated Quantum Random Number Generators. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-8.	1.9	10
34	Electric field-induced second harmonic generation in silicon waveguide by interdigitated contacts. , 2020, , .		3
35	Second-harmonic generation in periodically poled silicon waveguides with lateral p-i-n junctions: publisher's note. Optics Letters, 2020, 45, 3348.	1.7	1
36	Unidirectional reflection from an integrated "taiji―microresonator. Photonics Research, 2020, 8, 1333.	3.4	19

#	Article	IF	CITATIONS
37	Design of an external cavity semiconductor laser for intra-cavity beam combining. , 2020, , .		0
38	Intermodal four-wave mixing for heralded single-photon sources in the MIR (Conference) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 58 702 Td (
39	Passive coherent beam combining in an interferometric semiconductor laser cavity (Conference) Tj ETQq1 1 0.7	84314 rgB	T /Overlock
40	Second-harmonic generation in periodically poled silicon waveguides with lateral p-i-n junctions. Optics Letters, 2020, 45, 3188.	1.7	17
41	Single particle entanglement as a tool for generating quantum random numbers. , 2020, , .		0
42	Mid infrared heralded single photons on a silicon chip. , 2020, , .		0
43	Near-optimal spontaneous photon sources on a silicon quantum photonic chip. , 2020, , .		2
44	What Is the Origin of Second Harmonic Generation in Strained Silicon Waveguides?. , 2020, , .		0
45	Time Response of a Microring Resonator to a Rectangular Pulse in Different Coupling Regimes. Journal of Lightwave Technology, 2019, 37, 5091-5099.	2.7	8
46	AFM1 Detection in Milk by Fab' Functionalized Si3N4 Asymmetric Mach–Zehnder Interferometric Biosensors. Toxins, 2019, 11, 409.	1.5	21
47	Field-Induced Nonlinearities in Silicon Waveguides Embedded in Lateral p-n Junctions. Frontiers in Physics, 2019, 7, .	1.0	8
48	Four Wave Mixing control in a photonic molecule made by silicon microring resonators. Scientific Reports, 2019, 9, 408.	1.6	11
49	On the origin of second harmonic generation in silicon waveguides with silicon nitride cladding. Scientific Reports, 2019, 9, 1088.	1.6	38
50	Automatic Initialization Methods for Photonic Components on a Silicon-Based Optical Switch. Applied Sciences (Switzerland), 2019, 9, 1843.	1.3	8
51	Hermitian and Non-Hermitian Mode Coupling in a Microdisk Resonator Due to Stochastic Surface Roughness Scattering. IEEE Photonics Journal, 2019, 11, 1-14.	1.0	8
52	A Compact TDC-based Quantum Random Number Generator. , 2019, , .		4
53	Silicon Photonics Chip for Inter-modal Four Wave Mixing on a Broad Wavelength Range. Frontiers in Physics, 2019, 7, .	1.0	10
54	Integrated Reconfigurable Silicon Photonics Switch Matrix in IRIS Project: Technological Achievements and Experimental Results. Journal of Lightwave Technology, 2019, 37, 345-355.	2.7	16

#	Article	IF	CITATIONS
55	Towards MIR heralded photons via intermodal four wave mixing in silicon waveguides. , 2019, , .		0

56 Second order nonlinearities in silicon waveguides: from the physics to new applications (Conference) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

57	A 3D Photonic-Electronic Integrated Transponder Aggregator With \$48imes 16\$ Heater Control Cells. IEEE Photonics Technology Letters, 2018, 30, 681-684.	1.3	11
58	Thermo-optic coefficient and nonlinear refractive index of silicon oxynitride waveguides. AIP Advances, 2018, 8, .	0.6	26
59	A Robust Quantum Random Number Generator Based on an Integrated Emitter-Photodetector Structure. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	1.9	12
60	Intermodal four-wave mixing in silicon waveguides. Photonics Research, 2018, 6, 805.	3.4	45
61	Tuning the strain-induced resonance shift in silicon racetrack resonators by their orientation. Optics Express, 2018, 26, 4204.	1.7	7
62	Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier. Frontiers in Physics, 2018, 6, .	1.0	8
63	A Free-Space Interferometer for Phase-Delay Measurements in Integrated Optical Devices in Degenerate Pump-and-Probe Experiments. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2863-2871.	2.4	2
64	Fast analytical modelling of an SOI micro-ring resonator for bio-sensing application. Journal Physics D: Applied Physics, 2018, 51, 285401.	1.3	17
65	Optical Switching in Next Generation Data Centers. , 2018, , .		17
66	Low crosstalk silicon arrayed waveguide gratings for on-chip optical multiplexing. , 2018, , .		3
66 67	Low crosstalk silicon arrayed waveguide gratings for on-chip optical multiplexing. , 2018, , . Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?. , 2018, , .		3 2
66 67 68	Low crosstalk silicon arrayed waveguide gratings for on-chip optical multiplexing. , 2018, , . Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?. , 2018, , . Integrated, scalable and reconfigurable Silicon Photonics based optical switch for colorless, directionless and contentionless operation. , 2018, , .		3 2 1
66 67 68 69	Low crosstalk silicon arrayed waveguide gratings for on-chip optical multiplexing., 2018,,. Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?., 2018,,. Integrated, scalable and reconfigurable Silicon Photonics based optical switch for colorless, directionless and contentionless operation., 2018,,. Mid-infrared coincidence measurements based on intracavity frequency conversion., 2018,,.		3 2 1 1
6667686970	Low crosstalk silicon arrayed waveguide gratings for on-chip optical multiplexing., 2018,,. Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?., 2018,,. Integrated, scalable and reconfigurable Silicon Photonics based optical switch for colorless, directionless and contentionless operation., 2018,,. Mid-infrared coincidence measurements based on intracavity frequency conversion., 2018,,. Intermodal four wave mixing in silicon waveguides for on-chip wavelength conversion and generation (Conference Presentation)., 2018,,.		3 2 1 1 0
 66 67 68 69 70 71 	Low crosstalk silicon arrayed waveguide gratings for on-chip optical multiplexing., 2018,,. Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?, 2018,,. Integrated, scalable and reconfigurable Silicon Photonics based optical switch for colorless, directionless and contentionless operation., 2018,,. Mid-infrared coincidence measurements based on intracavity frequency conversion., 2018,,. Intermodal four wave mixing in silicon waveguides for on-chip wavelength conversion and generation (Conference Presentation)., 2018,,. Photonic biosensors for Fab'-AFM1 interaction study in real milk (Conference Presentation)., 2018,,.		3 2 1 1 0 0

#	Article	IF	CITATIONS
73	Automatic alignment of photonic components of massive optical switch to ITU channels (Conference) Tj ETQq1	1 0.78431	4 rgBT /Over
74	Robust Quantum Random Number Generation With Silicon Nanocrystals Light Source. Journal of Lightwave Technology, 2017, 35, 1588-1594.	2.7	9
75	Mid-infrared coincidence measurements on twin photons at room temperature. Nature Communications, 2017, 8, 15184.	5.8	58
76	Pump-and-probe optical transmission phase shift as a quantitative probe of the Bogoliubov dispersion relation in a nonlinear channel waveguide. European Physical Journal D, 2017, 71, 1.	0.6	10
77	Nonlinear silicon photonics. Journal of Optics (United Kingdom), 2017, 19, 093002.	1.0	85
78	A new aptamer immobilization strategy for protein recognition. Sensors and Actuators B: Chemical, 2017, 252, 222-231.	4.0	9
79	Oblique beams interference for mode selection in multimode silicon waveguides. Journal of Applied Physics, 2017, 122, 113106.	1.1	1
80	Silicon photonics for optical switching in data centers. , 2017, , .		0
81	Methods for Low Crosstalk and Wavelength Tunability in Arrayed-Waveguide Grating for On-Silicon Optical Network. Journal of Lightwave Technology, 2017, 35, 5134-5141.	2.7	25
82	Aptamer- and Fab'- Functionalized Microring Resonators for Aflatoxin M1 Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 350-357.	1.9	19
83	Broad wavelength generation and conversion with multi modal Four Wave Mixing in silicon waveguides. , 2017, , .		3
84	Complete crossing of Fano resonances in an optical microcavity via nonlinear tuning. Photonics Research, 2017, 5, 168.	3.4	9
85	From SHG to mid-infrared SPDC generation in strained silicon waveguides. , 2017, , .		2
86	Use of microring resonators for biospecific interaction analysis. , 2017, , .		1
87	Asymmetric Mach–Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection. Biosensors, 2016, 6, 1.	2.3	101
88	Microring Resonators and Silicon Photonics. MRS Advances, 2016, 1, 3281-3293.	0.5	3
89	Role of the inversion layer on the charge injection in silicon nanocrystal multilayered light emitting devices. Journal of Applied Physics, 2016, 120, .	1.1	2
90	Quantum interference in an asymmetric Mach-Zehnder interferometer. Journal of Optics (United) Tj ETQq0 0 0 r	gBT_/Overlo	ock 10 Tf 50

6

#	Article	IF	CITATIONS
91	Biosensors based on Si3N4asymmetric Mach-Zehnder interferometers. , 2016, , .		2
92	Design and Implementation of an Integrated Reconfigurable Silicon Photonics Switch Matrix in IRIS Project. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 155-168.	1.9	44
93	One and two-photon quantum interference in a Mach-Zehnder interferometer. , 2016, , .		1
94	High frequency electro-optic measurement of strained silicon racetrack resonators. , 2016, , .		0
95	A scalable reduced order modelling approach for whispering-gallery mode resonators. , 2016, , .		0
96	Wavelength Dependence of a Vertically Coupled Resonator-Waveguide System. Journal of Lightwave Technology, 2016, 34, 5385-5390.	2.7	6
97	Ceneration of high quality random numbers via an all-silicon-based approach. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3186-3193.	0.8	5
98	Homodyne Detection of Free Carrier Induced Electro-Optic Modulation in Strained Silicon Resonators. Journal of Lightwave Technology, 2016, 34, 5657-5668.	2.7	13
99	Time resolved electro-optic measurements in strained silicon racetrack resonators. , 2016, , .		0
100	Silicon photonics for switching in next generation data centers. , 2016, , .		2
101	A robust approach to the generation of high-quality random numbers. , 2016, , .		0
102	Modeling and validation of high-performance and athermal AWGs for the silicon photonics platform. , 2016, , .		0
103	Reflectance Reduction in a Whiskered SOI Star Coupler. IEEE Photonics Technology Letters, 2016, 28, 1870-1873.	1.3	10
104	Modeling and validation of high-performance and a-thermal AWGs for the silicon photonics platform. Proceedings of SPIE, 2016, , .	0.8	0
105	Stimulated degenerate four-wave mixing in Si nanocrystal waveguides. Journal of Optics (United) Tj ETQq1 1 0.78	34314 rgB ⁻ 1.0	T /Overlock
106	A SiON Microring Resonator-Based Platform for Biosensing at 850 nm. Journal of Lightwave Technology, 2016, 34, 969-977.	2.7	48
107	Silicon nanocrystals for nonlinear optics and secure communications. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2659-2671.	0.8	20
108	Design and Optimization of SiON Ring Resonator-Based Biosensors for Aflatoxin M1 Detection. Sensors, 2015, 15, 17300-17312.	2.1	44

#	Article	IF	CITATIONS
109	Integrated silicon photodetector for lab-on-chip sensor platforms. Proceedings of SPIE, 2015, , .	0.8	1
110	Off-diagonal photonic Lamb shift in reactively coupled waveguide-resonator system. Proceedings of SPIE, 2015, , .	0.8	0
111	Silicon Photonics. Springer Proceedings in Physics, 2015, , 7-10.	0.1	5
112	On chip test structure for fabrication error estimation based on a sequence of coupled resonators. , 2015, , .		0
113	Characterization of SION microring resonators for biosensing applications. , 2015, , .		2
114	Spectral- and time-resolved electroluminescence of silicon nanocrystals based light emitting devices. Journal Physics D: Applied Physics, 2015, 48, 455103.	1.3	3
115	High-frequency electro-optic measurement of strained silicon racetrack resonators. Optics Letters, 2015, 40, 5287.	1.7	40
116	Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions. Nanotechnology, 2015, 26, 045202.	1.3	14
117	Integrated silicon photodetector for lab-on-chip sensor platform. , 2015, , .		6
118	Quantum random number generator based on silicon nanocrystals LED. , 2015, , .		2
119	Role of Edge Inclination in an Optical Microdisk Resonator for Label-Free Sensing. Sensors, 2015, 15, 4796-4809.	2.1	19
120	Sensitivity and Limit of detection of biosensors based on ring resonators. , 2015, , .		5
121	Multi-mode interference revealed by two photon absorption in silicon rich SiO2 waveguides. Applied Physics Letters, 2015, 106, .	1.5	5
122	Ultra-high-Q thin-silicon nitride strip-loaded ring resonators. Optics Letters, 2015, 40, 3316.	1.7	15
123	Sensitivity and Limit of Detection of biosensors based on ring resonators. Sensing and Bio-Sensing Research, 2015, 6, 99-102.	2.2	65
124	Second order nonlinearity in Si by inhomogeneous strain and electric fields. Proceedings of SPIE, 2015, , .	0.8	2
125	Secondâ€Order Optical Nonlinearity in Silicon Waveguides: Inhomogeneous Stress and Interfaces. Advanced Optical Materials, 2015, 3, 129-136.	3.6	53
126	Purcell effect and luminescent downshifting in silicon nanocrystals coated back-contact solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 267-274.	3.0	24

#	Article	IF	CITATIONS
127	Characterization of Single-Photon Time Resolution: From Single SPAD to Silicon Photomultiplier. IEEE Transactions on Nuclear Science, 2014, 61, 2678-2686.	1.2	65
128	Introduction to the Issue on Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 5-7.	1.9	0
129	Nonlinear self-polarization flipping in silicon sub-wavelength waveguides: distortion, loss, dispersion, and noise effects. Optics Express, 2014, 22, 27643.	1.7	2
130	Chaotic dynamics in coupled resonator sequences. Optics Express, 2014, 22, 14505.	1.7	14
131	Chaotic dynamics in coupled resonator sequences. , 2014, , .		0
132	Silicon oxynitride waveguides as evanescent-field-based fluorescent biosensors. Journal Physics D: Applied Physics, 2014, 47, 405401.	1.3	16
133	Evanescent-field excitation and collection approach for waveguide based photonic luminescent biosensors. Applied Physics B: Lasers and Optics, 2014, 114, 537-544.	1.1	7
134	High Detection Efficiency and Time Resolution Integrated-Passive-Quenched Single-Photon Avalanche Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 268-275.	1.9	18
135	Intermode reactive coupling induced by waveguide-resonator interaction. Physical Review A, 2014, 90, .	1.0	23
136	Silicon Photonics: is there light at the end of the tunnel?. , 2014, , .		0
137	Silicon-based monolithically integrated whispering-gallery mode resonators. Proceedings of SPIE, 2013, , .	0.8	1
138	Quantum effects in silicon for photovoltaic applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1071-1075.	0.8	7
139	Role of electron and hole transport processes in conductivity and light emission of silicon nanocrystals field-effect transistors. Proceedings of SPIE, 2013, , .	0.8	0
140	Toward a 1.54 \$mu\$m Electrically Driven Erbium-Doped Silicon Slot Waveguide and Optical Amplifier. Journal of Lightwave Technology, 2013, 31, 391-397.	2.7	34
141	Oscillatory Vertical Coupling between a Whispering-Gallery Resonator and a Bus Waveguide. Physical Review Letters, 2013, 110, 163901.	2.9	38
142	Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip. Nanotechnology, 2013, 24, 115202.	1.3	24
143	Monolithic integration of high-Q wedge resonators with vertically coupled waveguides. , 2013, , .		1
144	Electrically pumped Er-doped light emitting slot waveguides for on-chip optical routing at 1.54 μm. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
145	Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator. Optics Letters, 2013, 38, 3562.	1.7	21
146	Interferometric switching in coupled resonator optical waveguides-based reconfigurable optical device. Optics Letters, 2013, 38, 217.	1.7	7
147	Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide. Applied Physics Letters, 2013, 103, 061105.	1.5	1
148	Mid-infrared difference-frequency generation in silicon waveguides strained by silicon nitride. , 2013, ,		1
149	An All Optical Method for Fabrication Error Measurements in Integrated Photonic Circuits. Journal of Lightwave Technology, 2013, 31, 2340-2346.	2.7	5
150	Electroluminescent devices based on nanosilicon multilayer structures. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1525-1531.	0.8	12
151	Interferometric switching in CROW based reconfigurable optical device for routing application. , 2013, , .		0
152	Nonlinear self polarization-flipping in silicon waveguides. , 2013, , .		0
153	Electrical pump & probe and injected carrier losses quantification in Er doped Si slot waveguides. Optics Express, 2012, 20, 28808.	1.7	3
154	Reconfigurable optical routers based on â€∵Coupled Resonator Induced Transparency resonances. Optics Express, 2012, 20, 23856.	1.7	20
155	Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering. Optical Materials Express, 2012, 2, 1278.	1.6	24
156	A fully integrated high-Q Whispering-Gallery Wedge Resonator. Optics Express, 2012, 20, 22934.	1.7	36
157	Bipolar pulsed excitation of erbium-doped nanosilicon light emitting diodes. Journal of Applied Physics, 2012, 111, .	1.1	12
158	A polarimetric sensor based on nanoporous free standing membranes. , 2012, , .		1
159	Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation. Nanotechnology, 2012, 23, 125203.	1.3	37
160	Opto-electrical characterization of erbium-doped slot waveguides. Proceedings of SPIE, 2012, , .	0.8	0
161	Silicon-based monolithically integrated whispering-gallery mode resonators with buried waveguides. , 2012, , .		1
162	Silicon nanocluster sensitization of erbium ions under low-energy optical excitation. Journal of Applied Physics, 2012, 111, 094314.	1.1	4

#	Article	IF	CITATIONS
163	Photophysics of resonantly and non-resonantly excited erbium doped Ge nanowires. Nanotechnology, 2012, 23, 065702.	1.3	13
164	Cost Model Developed in European Project LIMA. Energy Procedia, 2012, 27, 646-651.	1.8	2
165	Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides. Semiconductor Science and Technology, 2012, 27, 085009.	1.0	23
166	Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance. Journal of Applied Physics, 2012, 111, 034303.	1.1	28
167	Effect of the annealing treatments on the electroluminescence efficiency of SiO ₂ layers doped with Si and Er. Journal Physics D: Applied Physics, 2012, 45, 045103.	1.3	8
168	Light Combining for Interferometric Switching. International Journal of Optics, 2012, 2012, 1-17.	0.6	0
169	Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials, 2012, 11, 148-154.	13.3	280
170	Polarization strategies to improve the emission of Si-based light sources emitting at 1.55 μm. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 734-738.	1.7	4
171	Optical and electrical properties of undoped and doped Ge nanocrystals. Nanoscale Research Letters, 2012, 7, 143.	3.1	30
172	Nanosilicon photonics as a platform to widen the scope of silicon photonics. , 2011, , .		0
173	Power efficiency of silicon nanocrystal based LED in pulsed regime. , 2011, , .		0
174	Second-order susceptibility χ ⁽²⁾ in Si waveguides. , 2011, , .		0
175	Development and Application of Er-Doped Silicon-Rich Silicon Nitrides and Er Silicates for On-Chip Light Sources. Topics in Applied Physics, 2011, , 95-130.	0.4	3
176	Photonics and Electronics Integration. Topics in Applied Physics, 2011, , 217-249.	0.4	3
177	154µm Er doped light emitting devices: Role of silicon content. , 2011, , .		1
178	Electroluminescence from Si nanocrystal/c-Si heterojunction light-emitting diodes. Applied Physics Letters, 2011, 99, 251113.	1.5	21
179	Silicon Photonics II. Topics in Applied Physics, 2011, , .	0.4	53
180	Graded-size Si quantum dot ensembles for efficient light-emitting diodes. Applied Physics Letters, 2011, 99, .	1.5	42

#	Article	IF	CITATIONS
181	Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions. Nanotechnology, 2011, 22, 215704.	1.3	20
182	Optical characterization of silicon-on-insulator–based single and coupled racetrack resonators. Journal of Nanophotonics, 2011, 5, 051705.	0.4	7
183	Cost model for LIMA device. Energy Procedia, 2011, 8, 443-448.	1.8	2
184	A Silicon Photonic Interferometric Router Device Based on SCISSOR Concept. Journal of Lightwave Technology, 2011, 29, 2747-2753.	2.7	3
185	Coupled-resonator-induced-transparency concept for wavelength routing applications. Optics Express, 2011, 19, 12227.	1.7	31
186	Optical characterization of a SCISSOR device. Optics Express, 2011, 19, 13664.	1.7	23
187	Birefringent porous silicon membranes for optical sensing. Optics Express, 2011, 19, 26106.	1.7	39
188	Robust design of an optical router based on a tapered side-coupled integrated spaced sequence of optical resonators. Optics Letters, 2011, 36, 1473.	1.7	3
189	Monolithic Whispering-Gallery Mode Resonators With Vertically Coupled Integrated Bus Waveguides. IEEE Photonics Technology Letters, 2011, 23, 1166-1168.	1.3	42
190	Development and optical characterization of vertical tapers in SiON waveguides using gray-scale lithography. Proceedings of SPIE, 2011, , .	0.8	4
191	Light emission and floating gate memory characteristics of germanium nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 635-638.	0.8	12
192	Nanosilicon: a new platform for photonics. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2880-2884.	0.8	4
193	Si nanoclusters coupled to Er3+ ions in a SiO2 matrix for optical amplifiers. Optical Materials, 2011, 33, 1086-1090.	1.7	4
194	Erbium implanted silicon rich oxide thin films suitable for slot waveguides applications. Optical Materials, 2011, 33, 1083-1085.	1.7	7
195	Deoxycholate as an efficient coating agent for hydrophilic silicon nanocrystals. Journal of Colloid and Interface Science, 2011, 358, 86-92.	5.0	21
196	Silicon nanocrystals as a photoluminescence down shifter for solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1224-1227.	3.0	56
197	Role of kinetic energy of impinging molecules in the α-sexithiophene growth. Thin Solid Films, 2011, 519, 4110-4113.	0.8	6
198	Broad-band tunable visible emission of sol–gel derived SiBOC ceramic thin films. Thin Solid Films, 2011, 519, 3822-3826.	0.8	22

#	Article	IF	CITATIONS
199	On-chip silicon-based active photonic molecules by complete photonic bandgap light confinement. Applied Physics Letters, 2011, 99, 034105.	1.5	9
200	Nanocrystalline silicon as a new platform to widen the scope of silicon photonics. , 2011, , .		0
201	Continuous wave spectroscopy of nonlinear dynamics of Si nanocrystals in a microdisk resonator. Physical Review B, 2011, 84, .	1.1	2
202	Copropagating pump and probe experiments on Si-nc in SiO2 rib waveguides doped with Er: The optical role of non-emitting ions. Applied Physics Letters, 2011, 99, 231114.	1.5	8
203	Electroluminescence and charge storage characteristics of quantum confined germanium nanocrystals. Journal of Applied Physics, 2011, 110, 024310.	1.1	22
204	Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime. Applied Physics Letters, 2011, 98, 201103.	1.5	11
205	Effect of the annealing treatments on the transport and electroluminescence properties of SiO2 layers doped with Er and Si nanoclusters Materials Research Society Symposia Proceedings, 2011, 1289, 511.	0.1	1
206	Silicon nanocrystal light emitting device as a bidirectional optical transceiver. Semiconductor Science and Technology, 2011, 26, 095019.	1.0	5
207	Modeling of Slot Waveguide Sensors Based on Polymeric Materials. Sensors, 2011, 11, 7327-7340.	2.1	17
208	HELIOS: photonics electronics functional integration on CMOS. Proceedings of SPIE, 2010, , .	0.8	3
209	Silicon solar cells with nano-crystalline silicon down shifter: experiment and modeling. Proceedings of SPIE, 2010, , .	0.8	7
210	Probing the Spontaneous Emission Dynamics in Si-Nanocrystals-Based Microdisk Resonators. Physical Review Letters, 2010, 104, 103901.	2.9	22
211	Photovoltaic properties of Si nanostructure based solar cells fabricated on quartz. , 2010, , .		1
212	Energy transfer mechanism and Auger effect in Er3+ coupled silicon nanoparticle samples. Journal of Applied Physics, 2010, 108, 053518.	1.1	28
213	Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths. Nano Letters, 2010, 10, 1506-1511.	4.5	218
214	Ferroelectric and ferroelastic domain wall motion in unconstrained Pb(Zr,Ti)O3 microtubes and thin films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 792-800.	1.7	6
215	Purcell factor and superradiance in Si-patterned waveguides. Optics Letters, 2010, 35, 3384.	1.7	2
216	Towards a Realistic Modelling of Ultra-Compact Racetrack Resonators. Journal of Lightwave Technology, 2010, , .	2.7	16

#	Article	IF	CITATIONS
217	Coupled-resonator-induced-transparency concept for wavelength router applications. , 2010, , .		Ο
218	High efficieny and long-term stability of nanocrystalline silicon based devices. , 2010, , .		1
219	Complex Scissor Device Characterization and All-Optical Tuning of Single Resonant Cavity. , 2010, , .		0
220	Spontaneous emission dynamics and Purcell enhancement in Si-nc-based microdisk resonators. , 2010, , .		0
221	Energy transfer between amorphous Si nanoclusters andEr3+ions in aSiO2matrix. Physical Review B, 2009, 79, .	1.1	36
222	Optically active Er3+ ions in SiO2 codoped with Si nanoclusters. Journal of Applied Physics, 2009, 106, 093107.	1.1	16
223	Silicon quantum dots in microdisk resonators: whispering-gallery modes, stress-induced Q-factor tuning and enhancement. , 2009, , .		0
224	Stabilization of Porous Silicon Free-Standing Coupled Optical Microcavities by Surface Chemical Modification. ECS Transactions, 2009, 16, 211-219.	0.3	0
225	Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers. Journal of Applied Physics, 2009, 106, 033104.	1.1	68
226	Porous Multilayers as a Dielectric Host for Photons Manipulation. ECS Transactions, 2009, 16, 307-321.	0.3	1
227	Silicon Nanocrystals as an Enabling Material for Silicon Photonics. Proceedings of the IEEE, 2009, 97, 1250-1268.	16.4	74
228	Nanosilicon photonics. Laser and Photonics Reviews, 2009, 3, 508-534.	4.4	147
229	Hybrid nanostructured supports for surface enhanced Raman scattering. Applied Surface Science, 2009, 255, 7652-7656.	3.1	8
230	White Luminescence from Sol–Gelâ€Derived SiOC Thin Films. Journal of the American Ceramic Society, 2009, 92, 2969-2974.	1.9	85
231	Polymeric waveguides using oxidized porous silicon cladding for optical amplification. Optical Materials, 2009, 31, 1488-1491.	1.7	10
232	Supersonic molecular beams deposition of α-quaterthiophene: Enhanced growth control and devices performances. Organic Electronics, 2009, 10, 521-526.	1.4	11
233	Light emitting devices based on nanocrystalline-silicon multilayer structure. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 912-915.	1.3	41
234	Assessment of the main material issues for achieving an Er coupled to silicon nanoclusters infrared amplifier. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1029-1033.	1.3	12

Lorenzo Pavesi

#	Article	IF	CITATIONS
235	Optical amplification studies in Si nanocrystals-based waveguides prepared by ion-beam synthesis. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1044-1047.	1.3	3
236	Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm. Optics Express, 2009, 17, 3941.	1.7	83
237	Whispering-gallery mode micro-kylix resonators. Optics Express, 2009, 17, 9434.	1.7	10
238	NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators. Optics Express, 2009, 17, 20762.	1.7	38
239	NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators: Erratum. Optics Express, 2009, 17, 23556.	1.7	Ο
240	Silicon nanocrystals to enable silicon photonics Invited Paper. Chinese Optics Letters, 2009, 7, 319-324.	1.3	11
241	Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices. Applied Physics Letters, 2009, 94, 062108.	1.5	29
242	High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling. Applied Physics Letters, 2009, 94, 221110.	1.5	111
243	Q-factor tuning in all-active whispering-gallery mode resonators with Si-nc. , 2009, , .		Ο
244	Bipolar injection in nanocrystalline-Si LEDs with low turn-on voltages and high power efficiency. , 2009, , .		0
245	Photo-response of Si-rich oxynitride film. , 2009, , .		0
246	Silicon quantum dots in microdisk resonators: Stress-engineering of disk core for q-factor tuning and enhancement. , 2009, , .		0
247	Er-doped Si nanoclusters waveguides longitudinally pumped by broad area lasers for optical amplification. Proceedings of SPIE, 2009, , .	0.8	Ο
248	Optical Gain and Lasing in Low Dimensional Silicon: The Quest for an Injection Laser. Nanostructure Science and Technology, 2009, , 103-123.	0.1	2
249	Si-nanocrystals/SiO2 thin films obtained by pyrolysis of sol–gel precursors. Thin Solid Films, 2008, 516, 6804-6807.	0.8	27
250	Low dimensional silicon structures for photonic and sensor applications. Applied Surface Science, 2008, 255, 624-627.	3.1	8
251	Intensely Photoluminescent Pseudoâ€Amorphous SiliconOxyCarboNitride Polymer–Ceramic Hybrids. Journal of the American Ceramic Society, 2008, 91, 2422-2424.	1.9	32
252	Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. II. Defect states electroluminescence. Journal of Applied Physics, 2008, 104, .	1.1	36

#	Article	IF	CITATIONS
253	Silicon-Based Light Sources for Silicon Integrated Circuits. Advances in Optical Technologies, 2008, 2008, 1-12.	0.8	51
254	Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator. Optics Express, 2008, 16, 13218.	1.7	54
255	Er ³⁺ coupled to Si nanoclusters rib waveguides. , 2008, , .		0
256	Further improvements in Er3+coupled to Si nanoclusters rib waveguides. , 2008, , .		10
257	The electron and crystalline structure features of ion-synthesized nanocomposite of Si nanocrystals in Al ₂ O ₃ matrix revealed by electron spectroscopy. Journal of Physics: Conference Series, 2008, 100, 072012.	0.3	6
258	Noise Spectroscopy of Gas Sensors. IEEE Sensors Journal, 2008, 8, 786-790.	2.4	32
259	Electroluminescence from nanocrystalline-Si/SiO <inf>2</inf> multilayers with an electron injection barrier. , 2008, , .		0
260	Non linear optical properties of Silicon nanocrystals for applications in photonic logic gates devices , 2008, , .		3
261	LOW-DIMENSIONAL SILICON AS A PHOTONIC MATERIAL. , 2008, , 314-334.		9
262	Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices. Journal of Applied Physics, 2008, 104, 063103.	1.1	42
263	Experimental characterization of Mach-Zehnder interferometers with coupled ring resonators in Silicon nanocrystals horizontal slot waveguides. , 2008, , .		Ο
264	Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals. , 2008, , .		8
265	Noise spectroscopy of porous silicon gas sensors. Proceedings of SPIE, 2008, , .	0.8	1
266	Photovoltaic effect in ultra-thin a-Si/SiO <inf>2</inf> multilayered structures. , 2008, , .		0
267	Couapled cavities in one-dimensional photonic crystal based on horizontal slot waveguide structure with Si-nc. , 2008, , .		2
268	Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 2008, 103, .	1.1	78
269	Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room-temperature band tail states photoluminescence. Journal of Applied Physics, 2008, 104, 083504.	1.1	31
270	Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54μm. Applied Physics Letters, 2008, 92, 051101.	1.5	45

#	Article	IF	CITATIONS
271	Whispering-gallery modes and Purcell effect in a Si-nanocrystal-based single microdisk resonator. , 2008, , .		0
272	High quality coupled ring resonators based on silicon clusters slot waveguide. , 2008, , .		2
273	Stabilized porous silicon optical superlattices with controlled surface passivation. Applied Physics Letters, 2008, 93, 061113.	1.5	34
274	Nonlinear properties of Silicon nanocrystals at 1550 nm and their application in slot waveguides. , 2008, , .		1
275	Dynamics of capillary condensation in bistable optical superlattices. Physical Review B, 2008, 77, .	1.1	4
276	Evanescent multimode longitudinal pumping scheme for Si-nanocluster sensitized Er ³⁺ doped waveguide amplifiers. Proceedings of SPIE, 2008, , .	0.8	0
277	Photonic switching on silicon: the FP6-PHOLOGIC approach. , 2008, , .		0
278	Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device. Journal of Applied Physics, 2008, 104, .	1.1	24
279	Signal Enhancement and Limiting Factors in Waveguides Containing Si Nanoclusters and Er3+Ions. Japanese Journal of Applied Physics, 2007, 46, 6626-6633.	0.8	11
280	Spectroscopy of silica layers containing Si nanocrystals: Experimental evidence of optical birefringence. Journal of Applied Physics, 2007, 101, 044310.	1.1	10
281	Excitable Er fraction and quenching phenomena in Er-dopedSiO2layers containing Si nanoclusters. Physical Review B, 2007, 76, .	1.1	91
282	Interference lithography by a soft x-ray laser beam: Nanopatterning on photoresists. Journal of Applied Physics, 2007, 102, 034313.	1.1	35
283	Assessment of the Excited Carrier absorption losses in Si-nc rib-waveguides. , 2007, , .		0
284	Charge Transport and Electroluminescence in PECVD Grown Silicon-Nanocrystals-Based LEDs. , 2007, ,		1
285	Deep-UV Lithography Fabrication of Slot Waveguides and Sandwiched Waveguides for Nonlinear Applications. , 2007, , .		34
286	Signal enhancement in Er ³⁺ coupled to Si nanoclusters rib-waveguides. Proceedings of SPIE, 2007, , .	0.8	0
287	Non-linear optical properties of PECVD Si-nc under nanosecond excitation. , 2007, , .		0
288	Optical gain in dye-doped polymer waveguides using oxidized porous silicon cladding. , 2007, , .		2

#	Article	IF	CITATIONS
289	Erbium and Silicon nanocrystals for light amplification. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	2
290	Silicon Photonics at University of Trento. , 2007, , .		0
291	Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides. Optics Express, 2007, 15, 11769.	1.7	35
292	Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs. Optics Express, 2007, 15, 14907.	1.7	8
293	An Automatic Compilation Framework for Configurable Architectures. , 2007, , .		0
294	Nanostructured Silicon for Optical Biosensors. Semiconductor Conference, 2009 CAS 2009 International, 2007, , .	0.0	1
295	Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2007, 101, 113510.	1.1	77
296	Photoluminescence of Silicon Nanocrystals in Silicon Oxide. Journal of Nanomaterials, 2007, 2007, 1-5.	1.5	17
297	Study of the pyrolysis process of an hybrid CH3SiO1.5 gel into a SiCO glass. Vibrational Spectroscopy, 2007, 45, 61-68.	1.2	54
298	Current–voltage and low-frequency noise characteristics of structures with porous silicon layers exposed to different gases. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 160-163.	1.3	9
299	Low-frequency noise in structures with porous silicon in different gas media. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2063-2067.	0.8	13
300	Optical gain in oxidized porous silicon waveguides impregnated with a laser dye. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2145-2149.	0.8	0
301	Vapor control of resonant Zener tunneling of light in a photonic crystal. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1351-1355.	0.8	2
302	Waveguiding, absorption and emission properties of dye-impregnated oxidized porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1502-1506.	0.8	0
303	Optical switching by capillary condensation. Nature Photonics, 2007, 1, 172-175.	15.6	64
304	Dielectric Matrix Influence on the Photoluminescence Properties of Silicon Nanocrystals. , 2006, , .		1
305	All-Optical MZI XOR Logic Gate based on Si Slot Waveguides Filled by Si-nc Embedded in SiO2. , 2006, , .		7

306 Signal Enhancement Improvement at 1535 nm of Si-nc: Er3+ Waveguides. , 2006, , .

#	Article	IF	CITATIONS
307	A Characterization of Injection, Transport an Excitation Mechanisms in Si-nc based MOS-LEDs. , 2006, , .		1
308	Non-Linear Optical Properties of Si Nanocrystals. , 2006, , .		5
309	Er-Coupled Si Nanocluster Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1607-1617.	1.9	42
310	Photon energy lifter. Optics Express, 2006, 14, 7270.	1.7	34
311	Photon recycling in Fabry–Perot micro-cavities based on Si3N4 waveguides. Photonics and Nanostructures - Fundamentals and Applications, 2006, 4, 41-46.	1.0	6
312	Optical losses and gain in silicon-rich silica waveguides containing Er ions. Journal of Luminescence, 2006, 121, 249-255.	1.5	30
313	Optical losses and absorption cross-section of silicon nanocrystals. Journal of Luminescence, 2006, 121, 344-348.	1.5	30
314	Integrated Optical Microcavity Infiltrated by Liquid Crystals for CWDM Applications. Optical and Quantum Electronics, 2006, 38, 249-255.	1.5	1
315	Luminescence of porous silicon derived nanocrystals dispersed in water: dependence on initial porous silicon oxidation. Journal of Nanoparticle Research, 2006, 8, 1071-1074.	0.8	22
316	Influence of the nature of oxide matrix on the photoluminescence spectrum of ion-synthesized silicon nanostructures. Thin Solid Films, 2006, 515, 333-337.	0.8	19
317	Focused ion beam fabrication of one-dimensional photonic crystals on Si3N4/SiO2channel waveguides. Journal of Optics, 2006, 8, S550-S553.	1.5	7
318	Broken symmetry in photonic crystals: resonant Zener tunneling of light waves. , 2006, , ThD4.		0
319	Nitrogen Influence on the Photoluminescence Properties of Silicon Nanocrystals. Materials Research Society Symposia Proceedings, 2006, 958, 1.	0.1	0
320	Nonlinear Optical Properties of Si Nanocrystals. Materials Research Society Symposia Proceedings, 2006, 958, 1.	0.1	2
321	Silicon light emitters and amplifiers: state of the art. , 2006, , .		4
322	Wave transport in random systems: Multiple resonance character of necklace modes and their statistical behavior. Physical Review E, 2006, 74, 035602.	0.8	34
323	Optical gain in dye-impregnated oxidized porous silicon waveguides. Applied Physics Letters, 2006, 89, 011107.	1.5	24
324	Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices. Physical Review B, 2006, 74, .	1.1	11

#	Article	IF	CITATIONS
325	Rewritable photonic circuits. Applied Physics Letters, 2006, 89, 211117.	1.5	118
326	Distance dependent interaction as the limiting factor for Si nanocluster to Er energy transfer in silica. Applied Physics Letters, 2006, 89, 163103.	1.5	54
327	Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er3+ coupled to Si nanoclusters. Applied Physics Letters, 2006, 88, 161901.	1.5	35
328	Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices. Applied Physics Letters, 2006, 88, 241103.	1.5	25
329	Optical necklace states in Anderson localized 1D systems. , 2006, , .		106
330	Bloch oscillations and resonant Zener tunneling of light in optical superlattices (Invited Paper). , 2005, 5840, 421.		0
331	Silicon chips light up. Physics World, 2005, 18, 25-26.	0.0	7
332	Optical gain in different silicon nanocrystal systems. Optical Materials, 2005, 27, 745-749.	1.7	77
333	Luminescent properties of Er and Si co-implanted silicates. Optical Materials, 2005, 27, 910-914.	1.7	6
334	Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals. Optical Materials, 2005, 27, 750-755.	1.7	22
335	Birefringence characterization of mono-dispersed silicon nanocrystals planar waveguides. Optical Materials, 2005, 27, 763-768.	1.7	8
336	Routes toward silicon-based lasers. Materials Today, 2005, 8, 18-25.	8.3	109
337	Fabrication and optimization of rugate filters based on porous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3227-3231.	0.8	38
338	Time resolved optical Bloch oscillations in porous silicon superlattice structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3283-3287.	0.8	2
339	Stimulated emission in the active planar optical waveguide made of silicon nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3429-3434.	0.8	5
340	Role of microstructure and layer thickness in porous silicon conductometric gas sensors. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1467-1471.	0.8	1
341	Force modulation microscopy of multilayered porous silicon samples. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1492-1496.	0.8	4
342	Structural and light-emission modification in chemically-etched porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1518-1523.	0.8	1

#	Article	IF	CITATIONS
343	Propagation losses of silicon nitride waveguides in the near-infrared range. Applied Physics Letters, 2005, 86, 121111.	1.5	77
344	Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides. Applied Physics Letters, 2005, 86, 261103.	1.5	80
345	Prospects and methods for Si-based lasers. , 2005, , .		Ο
346	Low-loss rib waveguides containing Si nanocrystals embedded in SiO2. Journal of Applied Physics, 2005, 97, 074312.	1.1	40
347	Zener Tunneling of Light Waves in an Optical Superlattice. Physical Review Letters, 2005, 94, 127401.	2.9	126
348	Porous silicon-based notch filters and waveguides. , 2005, , .		3
349	Design of an integrated optical switch based on liquid crystal infiltration. IEEE Journal of Quantum Electronics, 2005, 41, 1197-1202.	1.0	8
350	Light-pulse propagation in Fibonacci quasicrystals. Physical Review B, 2005, 71, .	1.1	65
351	Porous silicon-based rugate filters. Applied Optics, 2005, 44, 5415.	2.1	143
352	Wide-band transmittance of one-dimensional photonic crystals carved in Si3N4â^•SiO2 channel waveguides. Applied Physics Letters, 2005, 87, 211116.	1.5	9
353	Optics of nanostructured dielectrics. Journal of Optics, 2005, 7, S190-S197.	1.5	49
354	Optical Necklace States in Anderson Localized 1D Systems. Physical Review Letters, 2005, 94, 113903.	2.9	177
355	Birefringence in optical waveguides made by silicon nanocrystal superlattices. Applied Physics Letters, 2004, 85, 1268-1270.	1.5	11
356	Photonic bands and group-velocity dispersion inSi/SiO2photonic crystals from white-light interferometry. Physical Review B, 2004, 69, .	1.1	35
357	Polarized Optical Gain and Polarization-Narrowing of Heavily Oxidized Porous Silicon. Physical Review Letters, 2004, 93, 207402.	2.9	64
358	Opposite effects of NO2 on electrical injection in porous silicon gas sensors. Applied Physics Letters, 2004, 84, 4388-4390.	1.5	30
359	Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals. Journal of Applied Physics, 2004, 95, 767-769.	1.1	32
360	Optical gain in monodispersed silicon nanocrystals. Journal of Applied Physics, 2004, 96, 3164-3171.	1.1	83

#	Article	IF	CITATIONS
361	Light amplification in silicon nanocrystals by pump and probe transmission measurements. Journal of Applied Physics, 2004, 96, 5747-5755.	1.1	54
362	Zener tunneling of light in an optical superlattice. Materials Research Society Symposia Proceedings, 2004, 829, 295.	0.1	0
363	Pump-probe experiments on Er coupled Si-nanocrystals rib-loaded waveguides. Materials Research Society Symposia Proceedings, 2004, 832, 99.	0.1	0
364	Low loss silica waveguides containing Si nanocrystals. Materials Research Society Symposia Proceedings, 2004, 817, 80.	0.1	2
365	Pump-probe experiments on low loss silica waveguides containing Si nanocrystals. Materials Research Society Symposia Proceedings, 2004, 832, 33.	0.1	0
366	Improved reversibility in aged porous silicon NO2 sensors. Sensors and Actuators B: Chemical, 2004, 97, 45-48.	4.0	29
367	Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides. Materials Science in Semiconductor Processing, 2004, 7, 453-458.	1.9	60
368	Applicability conditions and experimental analysis of the variable stripe length method for gain measurements. Optics Communications, 2004, 229, 337-348.	1.0	137
369	Role of microstructure in porous silicon gas sensors for NO2. Applied Physics Letters, 2004, 85, 555-557.	1.5	29
370	Systematic correlation between Raman spectra, photoluminescence intensity, and absorption coefficient of silica layerscontaining Si nanocrystals. Applied Physics Letters, 2004, 85, 1511-1513.	1.5	84
371	Comparison Among Various <tex>\$hbox Si_3hboxN _4\$</tex> Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line. Journal of Lightwave Technology, 2004, 22, 1734-1740.	2.7	100
372	Silicon-based near-infrared tunable filters based on liquid crystals. , 2004, , .		2
373	Transport of optical waves in partially ordered materials. , 2004, , .		0
374	On the Route Towards a Monolithically Integrated Silicon Photonics. , 2004, , 287-298.		0
375	Si nanocrystals obtained through polymer pyrolysis. Applied Physics Letters, 2003, 83, 749-751.	1.5	43
376	Nanostructured silicon as a photonic material. Optics and Lasers in Engineering, 2003, 39, 345-368.	2.0	25
377	Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 297-308.	1.3	121
378	X-ray absorption study of light emitting silicon nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 321-325.	1.3	10

Lorenzo Pavesi

#	Article	IF	CITATIONS
379	Absorption cross-sections and lifetimes as a function of size in Si nanocrystals embedded in SiO2. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 429-433.	1.3	13
380	Light propagation in one-dimensional porous silicon complex systems. Physica Status Solidi A, 2003, 197, 298-302.	1.7	14
381	Multiparametric porous silicon gas sensors with improved quality and sensitivity. Physica Status Solidi A, 2003, 197, 523-527.	1.7	32
382	Cytotoxic chemotherapy preceding apheresis of peripheral blood progenitor cells can affect the early reconstitution phase of naive T cells after autologous transplantation. Bone Marrow Transplantation, 2003, 31, 31-38.	1.3	8
383	Very sensitive porous silicon NO2 sensor. Sensors and Actuators B: Chemical, 2003, 89, 237-239.	4.0	104
384	Light Transport in Complex Photonic Systems. , 2003, , 2-20.		0
385	Stimulated Emission In Silicon Nanocrystals Gain Measurement And Rate Equation Modelling. , 2003, , 145-164.		3
386	Will silicon be the photonic material of the third millenium? *. Journal of Physics Condensed Matter, 2003, 15, R1169-R1196.	0.7	233
387	Silicon Nanostructures: Wells, Wires, and Dots. Springer Tracts in Modern Physics, 2003, , 123-178.	0.1	5
388	Light Transport through the Band-Edge States of Fibonacci Quasicrystals. Physical Review Letters, 2003, 90, 055501.	2.9	255
389	Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded inSiO2. Physical Review B, 2003, 68, .	1.1	235
390	Optical Analogue of Electronic Bloch Oscillations. Physical Review Letters, 2003, 91, 263902.	2.9	245
391	Porous silicon free-standing coupled microcavities. Applied Physics Letters, 2003, 82, 1550-1552.	1.5	59
392	Chemical etching effects in porous silicon layers. , 2003, , .		2
393	Interferometric Method for Monitoring Electrochemical Etching of Thin Films. Journal of the Electrochemical Society, 2003, 150, C381.	1.3	11
394	Stimulated emission in nanocrystalline silicon superlattices. Applied Physics Letters, 2003, 83, 5479-5481.	1.5	149
395	Dynamics of stimulated emission in silicon nanocrystals. Applied Physics Letters, 2003, 82, 4636-4638.	1.5	151
396	Free-standing porous silicon single and multiple optical cavities. Journal of Applied Physics, 2003, 93, 9724-9729.	1.1	124

#	Article	IF	CITATIONS
397	Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2. Applied Physics Letters, 2003, 82, 1595-1597.	1.5	139
398	Chemical composition and local structure of plasma enhanced chemical vapor-deposited Si nanodots and their embedding silica matrix. Applied Physics Letters, 2003, 82, 889-891.	1.5	17
399	Scattering rings as a tool for birefringence measurements in porous silicon. Journal of Applied Physics, 2003, 94, 6334-6340.	1.1	14
400	A review of the various approaches to a silicon laser. , 2003, , .		14
401	Surface photovoltage studies of porous silicon in presence of polluting gases: toward a selective gas sensor. , 2003, 5222, 12.		Ο
402	Time-Resolved Gain Dynamics in Silicon Nanocrystals. Materials Research Society Symposia Proceedings, 2003, 770, 341.	0.1	0
403	Silicon Nanocrystal Nucleation as a Function of the Annealing Temperature in SiO _x Films. Materials Research Society Symposia Proceedings, 2003, 770, 131.	0.1	2
404	Gain Theory And Models In Silicon Nanostructures. , 2003, , 261-280.		5
405	Light Emitting Silicon for Microphotonics. Springer Tracts in Modern Physics, 2003, , .	0.1	237
406	Experimental and Theoretical Joint Study on the Electronic and Structural Properties of Silicon Nanocrystals Embedded in SiO ₂ : active Role of the Interface Region. Materials Research Society Symposia Proceedings, 2003, 770, 611.	0.1	2
407	Scattering Rings in Birefringent Porous Silicon. Materials Research Society Symposia Proceedings, 2003, 762, 17171.	0.1	0
408	Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2002, 91, 4607-4610.	1.1	116
409	Near-field spectroscopy of porous silicon microcavity samples. Journal of Applied Physics, 2002, 91, 5495-5497.	1.1	1
410	P-type macroporous silicon for two-dimensional photonic crystals. Journal of Applied Physics, 2002, 92, 6966-6972.	1.1	57
411	New progress on p-type macroporous silicon electrodissolution. Materials Research Society Symposia Proceedings, 2002, 722, 671.	0.1	5
412	Optical gain and stimulated emission in silicon nanocrystals. Materials Research Society Symposia Proceedings, 2002, 738, 881.	0.1	0
413	Optical gain in PECVD silicon nanocrystals. , 2002, 4808, 13.		4
414	Scattering rings in optically anisotropic porous silicon. Applied Physics Letters, 2002, 81, 4919-4921.	1.5	27

Lorenzo Pavesi

#	Article	IF	CITATIONS
415	Spectroscopy of photonic bands in macroporous silicon photonic crystals. Physical Review B, 2002, 65, .	1.1	39
416	Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals. Journal of Modern Optics, 2002, 49, 719-730.	0.6	59
417	Optical response of one-dimensional (Si/SiO2)m photonic crystals. Journal of Applied Physics, 2002, 92, 1816-1820.	1.1	31
418	Nonlinear optical properties of plasma enhanced chemical vapour deposition grown silicon nanocrystals. Materials Research Society Symposia Proceedings, 2002, 722, 831.	0.1	0
419	Time-resolved light propoagation at the band-edge states of 1D Fibonacci quasicrystals. Materials Research Society Symposia Proceedings, 2002, 722, 691.	0.1	0
420	Multiparametric Porous Silicon Sensors. Sensors, 2002, 2, 121-126.	2.1	81
421	T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology, 2002, 106, 27-37.	2.0	51
422	Silicon nanostructures for photonics. Journal of Physics Condensed Matter, 2002, 14, 8253-8281.	0.7	58
423	A Porous Silicon Microcavity as an Optical and Electrical Multipatrametric Chemical Sensor. , 2002, , 399-412.		0
424	Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation. Surface Science, 2001, 481, 105-112.	0.8	43
425	Structural and Optical Properties of Silicon Nanocrystals Grown by Plasma-Enhanced Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2001, 1, 159-168.	0.9	26
426	Optical gain in silicon nanocrystals. , 2001, 4293, 162.		2
427	Photoluminescence from (Si/SiO2)n superlattices and their use as emitters in [SiO2/Si]n SiO2 [Si/SiO2]m microcavities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2019-2028.	2.0	7
428	(Si/SiO2)n multilayers and microcavities for LED applications. Optical Materials, 2001, 17, 27-30.	1.7	13
429	Optical gain in silicon nanocrystals. Optical Materials, 2001, 17, 41-44.	1.7	25
430	Monitoring penetration of ethanol in a porous silicon microcavity by photoluminescence interferometry. Applied Physics Letters, 2001, 78, 3744-3746.	1.5	29
431	Near-field optical investigation of porous silicon samples. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 611-621.	0.6	0
432	Porous silicon optical devices and Si/SiO ₂ quantum wells: Recent results. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718.	0.6	16

#	Article	IF	CITATIONS
433	CMOS compatible Si/SiO ₂ multilayers for Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	2
434	CMOS Fabrication of a Light Emitting Diode Based on Silicon/Porous Silicon Heterojunction. Physica Status Solidi A, 2000, 182, 407-412.	1.7	5
435	Porous Silicon Microcavities as Optical and Electrical Chemical Sensors. Physica Status Solidi A, 2000, 182, 479-484.	1.7	20
436	Electroluminescence in MOS structures with Si/SiO2 nanometric multilayers. Solid State Communications, 2000, 114, 33-37.	0.9	31
437	Electrochemically oxidised porous silicon microcavities. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 59-65.	1.7	12
438	Optical characterization of reverse biased porous silicon light emitting diode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 114-117.	1.7	8
439	Light emitting diodes based on anodically oxidized silicon/porous silicon heterojunction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 109-113.	1.7	8
440	On the route towards Si-based optical interconnects. Microelectronic Engineering, 2000, 50, 81-86.	1.1	15
441	Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surface Science Reports, 2000, 38, 1-126.	3.8	1,256
442	Optical gain in silicon nanocrystals. Nature, 2000, 408, 440-444.	13.7	2,269
443	AC Conductivity of Porous Silicon from Monte Carlo Simulations. Journal of Porous Materials, 2000, 7, 107-110.	1.3	3
443 444	AC Conductivity of Porous Silicon from Monte Carlo Simulations. Journal of Porous Materials, 2000, 7, 107-110. Porous silicon optical devices and Si/SiO 2 quantum wells: recent results. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718.	1.3 0.6	3 0
443 444 445	AC Conductivity of Porous Silicon from Monte Carlo Simulations. Journal of Porous Materials, 2000, 7, 107-110. Porous silicon optical devices and Si/SiO 2 quantum wells: recent results. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718. Near-field optical investigation of porous silicon samples. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718.	1.3 0.6 0.6	3 0 0
443 444 445 446	AC Conductivity of Porous Silicon from Monte Carlo Simulations. Journal of Porous Materials, 2000, 7, 107-110.Porous silicon optical devices and Si/SiO 2 quantum wells: recent results. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718.Near-field optical investigation of porous silicon samples. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718.Optical absorption and photoluminescence properties ofaâ~'Silâ^'xNx:Hfilms deposited by plasma-enhanced CVD. Physical Review B, 2000, 61, 4693-4698.	1.3 0.6 0.6 1.1	3 0 0 61
443 444 445 446 447	AC Conductivity of Porous Silicon from Monte Carlo Simulations. Journal of Porous Materials, 2000, 7, 107-110. Porous silicon optical devices and Si/SiO 2 quantum wells: recent results. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718. Near-field optical investigation of porous silicon samples. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 611-621. Optical absorption and photoluminescence properties ofaâ ^o Si1â ^o xNx:Hfilms deposited by plasma-enhanced CVD. Physical Review B, 2000, 61, 4693-4698. Multiparametric sensor for air pollutants based on a porous silicon optical microcavity. Materials Research Society Symposia Proceedings, 2000, 638, 1.	1.3 0.6 0.6 1.1	3 0 0 61 2
 443 444 445 446 447 448 	AC Conductivity of Porous Silicon from Monte Carlo Simulations, Journal of Porous Materials, 2000, 7, 107-110. Porous silicon optical devices and Si/SiO 2 quantum wells: recent results. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718. Near-field optical investigation of porous silicon samples. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 611-621. Optical absorption and photoluminescence properties ofaâ Si1â xNx:Hfilms deposited by plasma-enhanced CVD. Physical Review B, 2000, 61, 4693-4698. Multiparametric sensor for air pollutants based on a porous silicon optical microcavity. Materials Research Society Symposia Proceedings, 2000, 638, 1. Optical absorption and luminescence properties of wide-band gap amorphous silicon based alloys. Journal of Non-Crystalline Solids, 2000, 266-269, 588-592.	1.3 0.6 0.6 1.1 0.1	3 0 0 61 2 38
 443 444 445 446 447 448 449 	AC Conductivity of Porous Silicon from Monte Carlo Simulations. Journal of Porous Materials, 2000, 7, 107-110. Porous silicon optical devices and Si/SiO 2 quantum wells: recent results. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 705-718. Near-field optical investigation of porous silicon samples. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 611-621. Optical absorption and photoluminescence properties ofaâ ^{or} Si1â ^{or} XNx:Hfilms deposited by plasma-enhanced CVD. Physical Review B, 2000, 61, 4693-4698. Multiparametric sensor for air pollutants based on a porous silicon optical microcavity. Materials Research Society Symposia Proceedings, 2000, 638, 1. Optical absorption and luminescence properties of wide-band gap amorphous silicon based alloys. Journal of Non-Crystalline Solids, 2000, 266-269, 588-592. Porous silicon microcavities as optical chemical sensors. Applied Physics Letters, 2000, 76, 2523-2525.	1.3 0.6 0.6 1.1 0.1 1.5	3 0 0 61 2 38 197

#	Article	IF	CITATIONS
451	Visible Light Emission from a New Material System: Si/SiO2 Superlattices in Optical Microcavities. , 2000, , 121-136.		0
452	Resonant second harmonic generation in ZnSe bulk microcavity. Applied Physics Letters, 1999, 74, 1945-1947.	1.5	26
453	Temperature dependence of the photoluminescence of all-porous-silicon optical microcavities. Journal of Applied Physics, 1999, 85, 1760-1764.	1.1	26
454	Luminescent properties of GaN thin films prepared by pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 137-140.	1.7	6
455	Light emitting porous silicon diode based on a silicon/porous silicon heterojunction. Journal of Applied Physics, 1999, 86, 6474-6482.	1.1	28
456	Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers. Physical Review B, 1999, 60, 11572-11576.	1.1	40
457	Elaboration, characterization and aging effects of porous silicon microcavities formed on lightly p-type doped substrates. Semiconductor Science and Technology, 1999, 14, 1052-1059.	1.0	28
458	Porous Silicon Based Light Emitting Diodes: A Progress Report. Physica Status Solidi A, 1998, 165, 91-96.	1.7	6
459	All porous silicon microcavities: growth and physics. Journal of Luminescence, 1998, 80, 43-52.	1.5	54
460	Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices. Journal of Luminescence, 1998, 80, 423-427.	1.5	10
461	Reply to the comment on `Monte Carlo simulations of the recombination dynamics in porous silicon'. Journal of Physics Condensed Matter, 1998, 10, 1449-1451.	0.7	0
462	Two-dimensional tight-binding model of ac conductivity in porous silicon. Journal of Applied Physics, 1998, 83, 7693-7698.	1.1	12
463	All-porous silicon-coupled microcavities: Experiment versus theory. Physical Review B, 1998, 58, 15794-15800.	1.1	56
464	Photoluminescence of localized excitons in pulsed-laser-deposited GaN. Applied Physics Letters, 1998, 73, 3390-3392.	1.5	28
465	Investigation of Si as an n-type dopant in AlGaAs grown by molecular beam epitaxy on high index planes. Semiconductor Science and Technology, 1997, 12, 555-563.	1.0	4
466	Photoluminescence determination of the Be binding energy in direct-gap AlGaAs. Applied Physics Letters, 1997, 71, 3120-3122.	1.5	6
467	Time-resolved photoluminescence of all-porous-silicon microcavities. Physical Review B, 1997, 56, 15264-15271.	1.1	25
468	On the Route towards Efficient Light Emitting Diodes Based on Porous Silicon. Solid State Phenomena, 1997, 54, 27-36.	0.3	0

#	Article	IF	CITATIONS
469	Effect of Annealing Under Uniform Stress on Photoluminescence, Electrical and Structural Properties of Silicon. Materials Research Society Symposia Proceedings, 1997, 469, 245.	0.1	0
470	Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry - PA©rot filters. Semiconductor Science and Technology, 1997, 12, 570-575.	1.0	78
471	Is the be incorporation the same in (311)A and (100) AlGaAs?. Microelectronics Journal, 1997, 28, 993-998.	1.1	2
472	Porous silicon n–p light emitting diode. Thin Solid Films, 1997, 297, 272-276.	0.8	18
473	Collection of circulating progenitor cells after epirubicin, paclitaxel and filgrastim in patients with metastatic breast cancer. British Journal of Cancer, 1997, 75, 1368-1372.	2.9	23
474	Porous silicon dielectric multilayers and microcavities. Rivista Del Nuovo Cimento, 1997, 20, 1-76.	2.0	201
475	Photoluminescence investigation of Si-doped GaAs grown by molecular beam epitaxy on non-(100) oriented surfaces. Microelectronics Journal, 1997, 28, 717-726.	1.1	9
476	Infrared light emission due to radiation damage in crystalline silicon. Solid State Communications, 1997, 101, 889-891.	0.9	0
477	Photoluminescence investigation of p-type Si-doped AlGaAs grown by molecular beam epitaxy on (1 1) Tj ETQq1	1 8.78431	.4 ggBT /Over
478	Thermal stability of the silicon doping of GaAs grown on (111)A oriented substrates. Applied Physics Letters, 1996, 68, 652-654.	1.5	4
479	Enhancement of the Spontaneous Emission Rates in all Porous Silicon Optical Microcavities. Materials Research Society Symposia Proceedings, 1996, 452, 717.	0.1	2
480	Influence of dispersive exciton motion on the recombination dynamics in porous silicon. Journal of Applied Physics, 1996, 80, 216-225.	1.1	132
481	Porous-silicon microcavities. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1996, 18, 1213-1223.	0.4	9
482	Hydrogen interaction with shallow and deep centers in GaAs. International Journal of Quantum Chemistry, 1996, 57, 823-841.	1.0	9
483	Porous silicon resonant cavity light emitting diodes. Solid State Communications, 1996, 97, 1051-1053.	0.9	70
484	Auger lineshape analysis of porous silicon: experiment and theory. Thin Solid Films, 1996, 276, 244-247.	0.8	13
485	Restricted geometry fluid dynamics in natural porous systems by QENS and NMR PGSE. Physica B: Condensed Matter, 1996, 226, 10-14.	1.3	3
486	Porous silicon: a route towards a Si-based photonics?. Microelectronics Journal, 1996, 27, 437-448.	1.1	19

#	Article	IF	CITATIONS
487	NMR study of the diffusion processes in gels. Magnetic Resonance Imaging, 1996, 14, 985-987.	1.0	12
488	Be doping of (311)A and (100) Al0.24Ga0.76As grown by molecular beam epitaxy. Applied Physics Letters, 1996, 69, 4215-4217.	1.5	13
489	Visible photoluminescence from pressure annealed intrinsic Czochralskiâ€grown silicon. Applied Physics Letters, 1996, 69, 2900-2902.	1.5	11
490	Monte Carlo simulations of the recombination dynamics in porous silicon. Journal of Physics Condensed Matter, 1996, 8, 5161-5187.	0.7	61
491	Photoluminescence investigation of Si as p-type dopant in AlGaAs grown by molecular beam epitaxy on high-index planes. Semiconductor Science and Technology, 1996, 11, 1830-1837.	1.0	10
492	Hydrogen precipitation in highly oversaturated single-crystalline silicon. Physica Status Solidi A, 1995, 150, 539-586.	1.7	27
493	About thel–V characteristic of metal-porous silicon diodes. Physica Status Solidi A, 1995, 151, 355-361.	1.7	27
494	Recombination dynamics in porous silicon. Thin Solid Films, 1995, 255, 67-69.	0.8	11
495	Visible photoluminescence from Heâ€implanted silicon. Applied Physics Letters, 1995, 67, 3447-3449.	1.5	12
496	Application to optical components of dielectric porous silicon multilayers. Applied Physics Letters, 1995, 67, 2983-2985.	1.5	193
497	Enhanced optical properties in porous silicon microcavities. Physical Review B, 1995, 52, R14328-R14331.	1.1	90
498	Diffusion constants in polyacrylamide gels. Physical Review E, 1995, 51, 3318-3323.	0.8	22
499	Influence of the As overpressure during the molecular beam epitaxy growth of Siâ€doped (211)A and (311)A GaAs. Applied Physics Letters, 1995, 66, 2846-2848.	1.5	47
500	A comparison of Si-doped (100), (111) A, (111) B and (311) B AlxGa1-xAs samples grown by molecular beam epitaxy. Semiconductor Science and Technology, 1995, 10, 49-55.	1.0	11
501	Luminescence of Porous and Amorphous Hydrogenated Silicon: Analogies and Differences. Solid State Phenomena, 1995, 44-46, 261-274.	0.3	5
502	Controlled photon emission in porous silicon microcavities. Applied Physics Letters, 1995, 67, 3280-3282.	1.5	107
503	Strain and alloying effects on the electronic and vibrational properties of InyAl1â~'yAs on InP. Journal of Applied Physics, 1995, 78, 470-477.	1.1	23
504	Effect of As overpressure on Si-doped (111)A, (211)A and (311)A GaAs grown by molecular beam epitaxy. Microelectronics Journal, 1995, 26, 759-765.	1.1	17

#	Article	IF	CITATIONS
505	Spectroscopic investigation of electroluminescent porous silicon. Journal of Applied Physics, 1994, 75, 1118-1126.	1.1	68
506	Confinement effects on the phonon spectrum of thin InAs/InP strained single quantum wells. Semiconductor Science and Technology, 1994, 9, 256-262.	1.0	5
507	Visible luminescence from silicon by hydrogen implantation and annealing treatments. Applied Physics Letters, 1994, 65, 454-456.	1.5	15
508	Paramagnetic centers at and near the Si/SiOxinterface in porous silicon. Applied Physics Letters, 1994, 65, 3260-3262.	1.5	6
509	Induction-model analysis of Siî—,H stretching mode in porous silicon. Solid State Communications, 1994, 89, 615-618.	0.9	37
510	Photoluminescence of AlxGa1â^'xAs alloys. Journal of Applied Physics, 1994, 75, 4779-4842.	1.1	475
511	Nanocrystal size modifications in porous silicon by preanodization ion implantation. Applied Physics Letters, 1994, 65, 2182-2184.	1.5	33
512	Annealing effects on Siâ€doped GaAs grown on highâ€index planes by molecularâ€beam epitaxy. Journal of Applied Physics, 1994, 75, 3151-3157.	1.1	27
513	Visible Photoluminescence from Silicon Nanoconstrictions formed by Heavy Hydrogen Implantation and Annealing Treatments. Materials Research Society Symposia Proceedings, 1994, 358, 157.	0.1	1
514	Experiments and Monte Carlo Simulations on the Recombination Dynamics in Porous Silicon. Materials Research Society Symposia Proceedings, 1994, 358, 549.	0.1	3
515	Characterization of porous silicon inhomogeneities by high spatial resolution infrared spectroscopy. Solid State Communications, 1993, 87, 1-4.	0.9	78
516	Photoluminescence of porous silicon. Journal of Luminescence, 1993, 57, 131-135.	1.5	20
517	Radiation effects on porous silicon. Journal of Luminescence, 1993, 57, 227-229.	1.5	3
518	Magnetic field effects on non-periodic superlattice structures. Semiconductor Science and Technology, 1993, 8, 254-262.	1.0	3
519	Stretched-exponential decay of the luminescence in porous silicon. Physical Review B, 1993, 48, 17625-17628.	1.1	239
520	Electron bombardment effects on light emitting porous silicon. Journal of Luminescence, 1993, 57, 83-87.	1.5	3
521	Influence of miniband widths and interface disorder on vertical transport in superlattices. Physical Review B, 1993, 47, 10625-10632.	1.1	8
522	Porous silicon and its application for light emitting diodes. , 1993, 1985, 632.		4

#	Article	IF	CITATIONS
523	Orientation dependence of the Si doping of GaAs grown by molecular beam epitaxy. Semiconductor Science and Technology, 1993, 8, 167-171.	1.0	18
524	Spin-polarized calculations and hyperfine parameters for hydrogen or muonium in GaAs. Physical Review B, 1993, 47, 4256-4260.	1.1	13
525	Vertical transport through Landau levels in a GaAs/AlxGa1â^'xAs superlattice in the presence of a parallel magnetic field. Physical Review B, 1993, 47, 4644-4650.	1.1	8
526	Selfâ€interstitial mechanism for Zn diffusionâ€induced disordering of GaAs/AlxGa1â^'xAs (x=0.1â^'1) multipleâ€quantumâ€well structures. Journal of Applied Physics, 1993, 73, 3769-3781.	1.1	26
527	Exciton-carrier scattering in gallium selenide. Physical Review B, 1993, 47, 6340-6349.	1.1	19
528	Electronic Charge Trapping Effects in Porous Silicon. , 1993, , 61-67.		0
529	Effect of As overpressure on Si-doped (111)A GaAs grown by molecular beam epitaxy: a photoluminescence study. Semiconductor Science and Technology, 1992, 7, 1504-1507.	1.0	40
530	Equilibrium Sites and Relative Stability of Atomic and Molecular Hydrogen in GaAs. Materials Science Forum, 1992, 83-87, 611-616.	0.3	0
531	Effects of Hydrogen in Si-Doped AlAs. Materials Science Forum, 1992, 83-87, 635-640.	0.3	6
532	Atomic and molecular hydrogen in gallium arsenide: A theoretical study. Physical Review B, 1992, 46, 4621-4629.	1.1	89
533	Role of point defects in the silicon diffusion in GaAs and Al0.3Ga0.7As and in the related superlattice disordering. Journal of Applied Physics, 1992, 71, 2225-2237.	1.1	62
534	High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide. Physical Review B, 1992, 45, 1638-1644.	1.1	143
535	Indirect-energy-gap dependence on Al concentration inAlxGa1â^'xAs alloys. Physical Review B, 1992, 45, 10951-10957.	1.1	52
536	Disorder-induced localization in superlattices. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1992, 65, 213-229.	0.6	16
537	Low-Temperature EBIC Study of Zn-Diffused GaAs p-n Junctions. Physica Status Solidi A, 1992, 129, 555-567.	1.7	1
538	First principle calculations of hydrogen in aluminium arsenide. Solid State Communications, 1992, 83, 317-322.	0.9	2
539	Raman study of a single InP/InAs/InP strained quantum well. Solid State Communications, 1992, 84, 705-709.	0.9	17
540	Chain dynamics of collapsing polyacrylamide gels by quasi-elastic neutron scattering. Physica B: Condensed Matter, 1992, 180-181, 773-775.	1.3	1

#	Article	IF	CITATIONS
541	First-principles calculations of hydrogen in bulk GaAs. , 1991, , 392-396.		Ο
542	First-principles calculations of hydrogen in bulk GaAs. Physica B: Condensed Matter, 1991, 170, 392-396.	1.3	8
543	A photoluminescence study of the effects of hydrogen on deep levels in MBE grown GaAlAs:Si. Physica B: Condensed Matter, 1991, 170, 540-544.	1.3	2
544	High purity InP grown by chemical beam epitaxy. Journal of Electronic Materials, 1991, 20, 1087-1090.	1.0	5
545	Luminescence from exciton-free carrier collisions in GaSe. Journal of Luminescence, 1991, 48-49, 111-115.	1.5	4
546	Zinc diffusion in GaAs and zinc-induced disordering of GaAs/AlGaAs multiple quantum wells: a multitechnique study. Optical and Quantum Electronics, 1991, 23, S789-S804.	1.5	8
547	H passivation of Si impurities in GaAs. Physical Review B, 1991, 43, 2446-2449.	1.1	37
548	Thermal conversion ofnâ€ŧype GaAs:Si toptype in excess arsenic vapor. Journal of Applied Physics, 1991, 70, 3887-3891.	1.1	21
549	Temperature dependence of the InP band gap from a photoluminescence study. Physical Review B, 1991, 44, 9052-9055.	1.1	76
550	A model for the Zn diffusion in GaAs by a photoluminescence study. Journal of Applied Physics, 1991, 69, 7585-7593.	1.1	54
551	Deuterium-NMR study of microscopic effects in collapsing polyacrylamide gels. Physical Review A, 1991, 43, 6887-6893.	1.0	8
552	A photoluminescence study of the effects of hydrogen on deep levels in MBE grown GaAlAs:Si. , 1991, , 540-544.		0
553	CATHODOLUMINESCENCE AND ELECTRON BEAM INDUCED CURRENT STUDY OF HYDROGEN TREATMENT OF p-n GaAs JUNCTION. European Physical Journal Special Topics, 1991, 01, C6-225-C6-230.	0.2	0
554	Transfer Matrix Method to Compute Energy Levels of Superlattices. Physica Status Solidi (B): Basic Research, 1990, 157, 615-626.	0.7	7
555	Effects of different processes with hydrogen on the photoluminescence of GaAlAs:Si grown by molecular beam epitaxy. Applied Physics Letters, 1990, 57, 2797-2799.	1.5	4
556	Periodic and purposely disordered superlattices: The effect of continuous and discrete disorder distribution. Physical Review B, 1990, 42, 11362-11365.	1.1	7
557	Amphoteric behavior ofH0in GaAs. Physical Review B, 1990, 42, 1864-1867.	1.1	56
558	Comparative photoluminescence study of hydrogenation of GaAs, AlxGa1â^'xAs, and AlAs. Applied Physics Letters, 1989, 55, 475-477.	1.5	18

1

#	Article	IF	CITATIONS
559	Mott transition of the excitons in GaSe. Physical Review B, 1989, 39, 10982-10994.	1.1	16
560	Photoluminescence enhancement in postâ€growth hydrogenated Ga1â^'xAlxAs (0â‰ ¤ â‰ 0 .32) and GaAs/GaAlAs multilayer structures. Applied Physics Letters, 1989, 54, 1522-1524.	1.5	47
561	Photoluminescence of disorder-induced localized states in GaAs/AlxGa1â^'xAs superlattices. Physical Review B, 1989, 39, 7788-7795.	1.1	33
562	A simple high-temperature superconducting thin-film optical bolometer. Superconductor Science and Technology, 1989, 2, 314-316.	1.8	5
563	Optical spectroscopy of purposely disordered GaAs/AlGaAs superlattices. Superlattices and Microstructures, 1989, 5, 327-330.	1.4	5
564	Localized and extended states inGaAsAlxGa1â^'xAssuperlattices probed by resonant optical excitation. Physical Review B, 1988, 38, 1597-1600.	1.1	18
565	Red-shift of the excitonic level in two beam absorption spectra of GaSe. Physica Scripta, 1988, 38, 627-631.	1.2	4
566	On the excitonic Mott transition in the static screening approximation. Journal of Physics C: Solid State Physics, 1988, 21, 1485-1495.	1.5	12
567	Analysis of the excitonic mott transition in GaSe. Solid State Communications, 1987, 61, 321-325.	0.9	12
568	Evidence of the exciton-plasma transition in the emission spectra of GaSe. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1986, 8, 531-540.	0.4	1
569	A test chip for the development of porous silicon light emitting diodes. , 0, , .		0
570	Multiparametric gas sensors with porous silicon optical microcavities. , 0, , .		0
571	Optical properties and photonic bands of Si-based photonic crystals. , 0, , .		0
572	Fabrication and optical characterization, of 2-dimensional Si/sub 3/N/sub 4/ waveguides. , 0, , .		0
573	Light transport through porous silicon coupled microcavities. , 0, , .		0
574	Enhanced emission cross section and VSL analysis of erbium coupled silicon nanocrystals. , 0, , .		0
575	The various routes towards an injection silicon laser. , 0, , .		1

576 Er/sup 3+/ absorption cross section in Si-nanocrystal waveguides in SiO/sub 2/. , 0, , .

#	Article	IF	CITATIONS
577	Optical characterization of silicon nitride low-loss waveguides in the near infrared range. , 0, , .		2
578	Synthesis and Optical Properties of SiCnc/SiO2 Nanocomposite Thin Films. Ceramic Engineering and Science Proceedings, 0, , 85-91.	0.1	1
579	Nanosilicon photonics. SPIE Newsroom, 0, , .	0.1	0
580	SILICON NANOCRYSTALS ENABLING SILICON PHOTONICS. , 0, , 1-24.		1