
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11086780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibration Reduction in Rotorcraft Using Closed-Loop Active Flow Control. Journal of the American Helicopter Society, 2022, , .	0.8	0
2	Helicopter Shipboard Landing Simulation Including Wind, Deck Motion and Dynamic Ground Effect. Journal of Aircraft, 2021, 58, 467-486.	2.4	6
3	Vibration Reduction on Helicopter Rotors Using Open Loop Flow Control. , 2021, , .		0
4	Aeromechanics and Aeroelastic Stability of Coaxial Rotors. Journal of Aircraft, 2021, 58, 1386-1405.	2.4	6
5	Computational Simulations of Fluidic Actuation on Rotor Blades and Their Experimental Validation. Journal of Aircraft, 2021, 58, 1121-1136.	2.4	3
6	Multi-Objective Optimization Framework for Hypersonic Aerothermoelastic Scaling Laws and Its Application. AIAA Journal, 2020, 58, 3250-3257.	2.6	2
7	Computations of Trailing Edge Fluidic Actuation for Active Flow Control at Low Angles of Attack. , 2020, , .		2
8	Aeroelastic Stability Analysis of Coaxial Rotors using Viscous Vortex Particle Method. , 2020, , .		4
9	An aerothermoelastic analysis framework with reduced-order modeling applied to composite panels in hypersonic flows. Journal of Fluids and Structures, 2020, 94, 102927.	3.4	20
10	Aerothermoelastic Scaling Laws for Hypersonic Skin Panel Configurations with Arbitrary Flow Orientation. AIAA Journal, 2019, 57, 4377-4392.	2.6	13
11	Simulation of Maritime Helicopter Dynamics During Approach to Landing With Time-Accurate Wind-Over-Deck. , 2019, , .		4
12	A Surrogate-Based Optimization Framework for Hypersonic Aerothermoelastic Scaling Laws with Application to Skin Panels. , 2019, , .		8
13	Application of a CFD-Based Surrogate Approach for Active Flow Control Modeling. , 2019, , .		3
14	Aerothermoelastic Scaling Laws for Hypersonic Skin Panel Configurations with Arbitrary Flow Orientation. , 2018, , .		3
15	Active and Passive Helicopter Noise Reduction Using the AVINOR/HELINOIR Code Suite. Journal of Aircraft, 2018, 55, 727-740.	2.4	4
16	Application of Vortex Methods to Coaxial Rotor Wake and Load Calculations in Hover. Journal of Aircraft, 2018, 55, 373-381.	2.4	37
17	Integrated Aerothermoelastic Analysis Framework with Application to Skin Panels. AIAA Journal, 2018, 56, 4562-4581.	2.6	31
18	Multifidelity coKriging for High-Dimensional Output Functions with Application to Hypersonic Airloads Computation. AIAA Journal, 2018, 56, 3060-3070.	2.6	16

#	Article	IF	CITATIONS
19	The HELINOIR Aeroacoustic Code and its Application to Active/Passive Helicopter Noise Reduction. , 2017, , .		0
20	Application of Vortex Methods to Coaxial Rotor Wake and Load Calculations. , 2017, , .		6
21	An Aerothermoelastic Analysis Framework Enhanced by Model Order Reduction With Applications. , 2017, , .		9
22	An Efficient Approach for the Simulation and On-Blade Control of Helicopter Noise and the Impact on Vibration. Journal of the American Helicopter Society, 2017, 62, 1-15.	0.8	3
23	Forced and Aeroelastic Responses of Bird-Damaged Fan Blades: A Comparison and Its Implications. Journal of Aircraft, 2016, 53, 561-577.	2.4	7
24	Comprehensive Numerical Assessment of Rotorcraft Vibration and Noise Control Using Microflaps. Journal of Aircraft, 2016, 53, 1113-1130.	2.4	4
25	An Integrated Aerothermoelastic Analysis Framework for Predicting the Response of Composite Panels. , 2016, , .		8
26	Simultaneous Blade–Vortex Interaction Noise and Vibration Reduction in Rotorcraft Using Microflaps, Including the Effect of Actuator Saturation. Journal of the American Helicopter Society, 2015, 60, 1-16.	0.8	15
27	Uncertainty Propagation in Integrated Airframe–Propulsion System Analysis for Hypersonic Vehicles. Journal of Propulsion and Power, 2015, 31, 54-68.	2.2	31
28	Uncertainty Propagation in Hypersonic Aerothermoelastic Analysis. Journal of Aircraft, 2014, 51, 192-203.	2.4	45
29	Aeroelastic Response of Bird-Damaged Fan Blades Using a Coupled CFD/CSD Framework. , 2014, , .		4
30	On-Blade Control of Rotor Vibration, Noise, and Performance: Just Around the Corner? <i>The 33rd Alexander Nikolsky Honorary Lecture</i> . Journal of the American Helicopter Society, 2014, 59, 1-37.	0.8	42
31	Experimental and Computational Study on Flapping Wings with Bio-Inspired Hover Kinematics. AIAA Journal, 2014, 52, 1047-1058.	2.6	15
32	Approximate Aerodynamic and Aeroelastic Modeling of Flapping Wings in Forward Flight. AIAA Journal, 2014, 52, 212-218.	2.6	5
33	Hypersonic Aeroelastic and Aerothermoelastic Studies Using Computational Fluid Dynamics. AIAA Journal, 2014, 52, 2062-2078.	2.6	41
34	Unsteady Aerodynamic Analysis of a Bird-Damaged Turbofan. , 2013, , .		3
35	Aerothermoelastic and Aeroelastic Studies of Hypersonic Vehicles using CFD. , 2013, , .		2
36	Approximate Aeroelastic Modeling of Flapping Wings in Hover. AIAA Journal, 2013, 51, 567-583.	2.6	35

#	Article	IF	CITATIONS
37	Reduced-Order Dynamic Stall Modeling with Swept Flow Effects Using a Surrogate-Based Recurrence Framework. AIAA Journal, 2013, 51, 910-921.	2.6	21
38	Optimization of the Kinematics of a Flapping Wing MAV in Hover for Enhanced Performance. , 2013, , .		5
39	Thermomechanical Behavior of a Damaged Thermal Protection System: Finite-Element Simulations. Journal of Aerospace Engineering, 2012, 25, 90-102.	1.4	8
40	A Surrogate-Based Approach to Reduced-Order Dynamic Stall Modeling. Journal of the American Helicopter Society, 2012, 57, 1-9.	0.8	16
41	Effect of Piezoceramic Actuator Hysteresis on Helicopter Vibration and Noise Reduction. Journal of Guidance, Control, and Dynamics, 2012, 35, 1299-1311.	2.8	7
42	Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future. AIAA Journal, 2011, 49, 1089-1122.	2.6	260
43	Unsteady Aerodynamics of an Airfoil/Flap Combination on a Helicopter Rotor Using Computational Fluid Dynamics and Approximate Methods. Journal of the American Helicopter Society, 2011, 56, 1-13.	0.8	10
44	Computational Study of Microflaps with Application to Vibration Reduction in Helicopter Rotors. AIAA Journal, 2011, 49, 1450-1465.	2.6	39
45	Approximate Modeling of Unsteady Aerodynamics for Hypersonic Aeroelasticity. Journal of Aircraft, 2010, 47, 1932-1945.	2.4	100
46	Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework. AIAA Journal, 2010, 48, 2418-2429.	2.6	151
47	Multiple-Surrogate Approach to Helicopter Rotor Blade Vibration Reduction. AIAA Journal, 2009, 47, 271-282.	2.6	74
48	A moderate deflection composite helicopter rotor blade model with an improved cross-sectional analysis. International Journal of Solids and Structures, 2009, 46, 2186-2200.	2.7	42
49	Helicopter Vibration Reduction throughout the Entire Flight Envelope Using Surrogate-Based Optimization. Journal of the American Helicopter Society, 2009, 54, 12007-1200715.	0.8	33
50	Surrogate based optimization of helicopter rotor blades for vibration reduction in forward flight. Structural and Multidisciplinary Optimization, 2008, 35, 341-363.	3.5	51
51	Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow. AIAA Journal, 2008, 46, 2591-2610.	2.6	94
52	Rotor Performance Enhancement and Vibration Reduction in Presence of Dynamic Stall Using Actively Controlled Flaps. Journal of the American Helicopter Society, 2008, 53, 338.	0.8	26
53	Flutter Boundary Identification for Time-Domain Computational Aeroelasticity. AIAA Journal, 2007, 45, 1546-1555.	2.6	65
54	Numerical Treatment of Linear and Nonlinear Periodic Systems, with Applications. Advances in Chemical Physics, 2007, , 197-230.	0.3	1

#	Article	IF	CITATIONS
55	Simultaneous Vibration and Noise Reduction in Rotorcraft Using Aeroelastic Simulation. Journal of the American Helicopter Society, 2006, 51, 127-140.	0.8	50
56	Rotorcraft Vibration Reduction and Noise Prediction Using a Unified Aeroelastic Response Simulation. Journal of the American Helicopter Society, 2005, 50, 95-106.	0.8	47
57	Higher-Harmonic-Control Algorithm for Helicopter Vibration Reduction Revisited. Journal of Guidance, Control, and Dynamics, 2005, 28, 918-930.	2.8	84
58	Rotary-Wing Aeroelasticity: Current Status and Future Trends. AIAA Journal, 2004, 42, 1953-1972.	2.6	68
59	Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure. Journal of Applied Physics, 2004, 95, 2749-2754.	2.5	63
60	Rotary Wing Aeroelasticity-A Historical Perspective. Journal of Aircraft, 2003, 40, 1019-1046.	2.4	42
61	An aeroelastic model for composite rotor blades with straight and swept tips. Part I: Aeroelastic stability in hover. International Journal of Non-Linear Mechanics, 2002, 37, 967-986.	2.6	15
62	Application of a New Compressible Time Domain Aerodynamic Model to Vibration Reduction in Helicopters Using an Actively Controlled Flap. Journal of the American Helicopter Society, 2001, 46, 32-43.	0.8	48
63	Coupled Helicopter Rotor/Flexible Fuselage Aeroelastic Model for Control of Structural Response. AIAA Journal, 2000, 38, 1777-1788.	2.6	15
64	Fundamental Aeroservoelastic Study Combining Unsteady Computational Fluid Mechanics with Adaptive Control. Journal of Guidance, Control, and Dynamics, 2000, 23, 1117-1126.	2.8	32
65	Renaissance of Aeroelasticity and Its Future. Journal of Aircraft, 1999, 36, 105-121.	2.4	125
66	Technical Note: Correlation Studies for Hingeless Rotors in Forward Flight Using 2GCHAS. Journal of the American Helicopter Society, 1998, 43, 257-262.	0.8	6
67	Structural Optimization for Vibratory Loads Reduction of Composite Helicopter Rotor Blades with Advanced Geometry Tips. Journal of the American Helicopter Society, 1998, 43, 246-256.	0.8	41
68	Vibration reduction in rotorcraft using active control - A comparison of various approaches. Journal of Guidance, Control, and Dynamics, 1995, 18, 664-673.	2.8	185
69	Digital Adaptive Flutter Suppression and Simulation Using Approximate Transonic Aerodynamics. JVC/Journal of Vibration and Control, 1995, 1, 363-388.	2.6	17
70	Helicopter vibration reduction using structural optimization with aeroelastic/multidisciplinary constraints - A survey. Journal of Aircraft, 1991, 28, 8-21.	2.4	78
71	A Study of Fundamental Issues in Higher Harmonic Control Using Aeroelastic Simulation. Journal of the American Helicopter Society, 1991, 36, 32-43.	0.8	13
72	Influence of Unsteady Aerodynamic Models on Aeromechanical Stability in Ground Resonance. Journal of the American Helicopter Society, 1986, 31, 65-74.	0.8	13

#	Article	IF	CITATIONS
73	Numerical methods for determining the stability and response of periodic systems with applications to helicopter rotor dynamics and aeroelasticity. Computers and Mathematics With Applications, 1986, 12, 131-148.	2.7	49
74	Aeroelastic stability and response analysis of large horizontal-axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 1980, 5, 373-401.	3.9	16
75	Recent Developments in Rotary-wing Aeroelasticity. Journal of Aircraft, 1977, 14, 1027-1041.	2.4	61
76	Aeroelastic Modeling of Large Wind Turbines. Journal of the American Helicopter Society, 1976, 21, 17-27.	0.8	21
77	Vibration Reduction on Helicopter Rotors Using Open-Loop Flow Control. AIAA Journal, 0, , 1-16.	2.6	2