List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11086209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum physics in space. Physics Reports, 2022, 951, 1-70.	25.6	38
2	Present status and future challenges of non-interferometric tests of collapse models. Nature Physics, 2022, 18, 243-250.	16.7	40
3	Testing Fundamental Physics by Using Levitated Mechanical Systems. , 2021, , 303-332.		0
4	Prospects for near-field interferometric tests of collapse models. Physical Review A, 2021, 103, .	2.5	4
5	Quantum technologies in space. Experimental Astronomy, 2021, 51, 1677-1694.	3.7	23
6	Testing the foundation of quantum physics in space via Interferometric and non-interferometric experimentsÂwith mesoscopic nanoparticles. Communications Physics, 2021, 4, .	5.3	28
7	Test quantum mechanics in space — invest US\$1 billion. Nature, 2021, 596, 32-34.	27.8	5
8	Surpassing the Energy Resolution Limit with Ferromagnetic Torque Sensors. Physical Review Letters, 2021, 127, 070801.	7.8	10
9	Probing modified gravity with magnetically levitated resonators. Physical Review D, 2021, 104, .	4.7	6
10	New Avenues for Testing Collapse Models. Fundamental Theories of Physics, 2021, , 423-436.	0.3	0
11	Gravity-related collapse of the wave function and spontaneous heating: Revisiting the experimental bounds. AVS Quantum Science, 2021, 3, 045602.	4.9	5
12	Classical Tracking for Quantum Trajectories. , 2021, , .		1
13	Zel'dovich Amplification in a Superconducting Circuit. Physical Review Letters, 2020, 125, 140801.	7.8	7
14	Detecting Acceleration-Enhanced Vacuum Fluctuations with Atoms Inside a Cavity. Physical Review Letters, 2020, 125, 241301.	7.8	15
15	Revealing and concealing entanglement with noninertial motion. Physical Review A, 2020, 101, .	2.5	15
16	Scaling effect and optimization of SOI dual-waveguide optical trapping. , 2020, , .		0
17	Optimal control for feedback cooling in cavityless levitated optomechanics. New Journal of Physics, 2019, 21, 073019.	2.9	8
18	Characterization of non-linearities through mechanical squeezing in levitated optomechanics. Applied Physics Letters, 2019, 115, .	3.3	14

#	Article	IF	CITATIONS
19	Photon Bunching in a Rotating Reference Frame. Physical Review Letters, 2019, 123, 110401.	7.8	30
20	Talbot-Lau effect beyond the point-particle approximation. Physical Review A, 2019, 100, .	2.5	15
21	Acceleration sensing with magnetically levitated oscillators above a superconductor. Applied Physics Letters, 2019, 115, .	3.3	48
22	Static force characterization with Fano anti-resonance in levitated optomechanics. Applied Physics Letters, 2019, 114, .	3.3	8
23	Real-time Kalman filter: Cooling of an optically levitated nanoparticle. Physical Review A, 2018, 97, .	2.5	35
24	Direct measurement of the electrostatic image force of a levitated charged nanoparticle close to a surface. Physical Review A, 2018, 98, .	2.5	25
25	Precession Motion in Levitated Optomechanics. Physical Review Letters, 2018, 121, 253601.	7.8	53
26	Detection of anisotropic particles in levitated optomechanics. Physical Review A, 2018, 98, .	2.5	8
27	Dynamical model selection near the quantum-classical boundary. Physical Review A, 2018, 98, .	2.5	13
28	Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics. New Journal of Physics, 2018, 20, 083022.	2.9	41
29	Force sensing with an optically levitated charged nanoparticle. Applied Physics Letters, 2017, 111, .	3.3	94
30	Gravitational decoherence. Classical and Quantum Gravity, 2017, 34, 193002.	4.0	124
31	Spin Entanglement Witness for Quantum Gravity. Physical Review Letters, 2017, 119, 240401.	7.8	415
32	Wigner Function Reconstruction in Levitated Optomechanics. Quantum Measurements and Quantum Metrology, 2017, 4, .	3.3	14
33	Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1421.	2.1	95
34	Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics. Physical Review Letters, 2016, 117, 273601.	7.8	74
35	Effects of Newtonian gravitational self-interaction in harmonically trapped quantum systems. Scientific Reports, 2016, 6, 30840.	3.3	11
36	Macroscopic Quantum Resonators (MAQRO): 2015 update. EPJ Quantum Technology, 2016, 3, .	6.3	77

#	Article	IF	CITATIONS
37	Optomechanical test of the SchrĶdinger-Newton equation. Physical Review D, 2016, 93, .	4.7	41
38	A proposal for the experimental detection of CSL induced random walk. Scientific Reports, 2015, 5, 7664.	3.3	25
39	On the Existence of Low-Mass Dark Matter and its Direct Detection. Scientific Reports, 2015, 5, 8058.	3.3	28
40	ls Quantum Linear Superposition an Exact Principle of Nature?. The Frontiers Collection, 2015, , 151-164.	0.2	1
41	Near-field interferometry of a free-falling nanoparticle from a point-like source. Nature Communications, 2014, 5, 4788.	12.8	158
42	Collapse models: from theoretical foundations to experimental verifications. Journal of Physics: Conference Series, 2014, 504, 012023.	0.4	9
43	Experimental methods of molecular matter-wave optics. Reports on Progress in Physics, 2013, 76, 086402.	20.1	50
44	Models of wave-function collapse, underlying theories, and experimental tests. Reviews of Modern Physics, 2013, 85, 471-527.	45.6	775
45	Optomechanical interface for probing matter-wave coherence. Scientific Reports, 2013, 3, 3378.	3.3	6
46	Coherent control of the motion of complex molecules and the coupling to internal state dynamics. Faraday Discussions, 2011, 153, 237.	3.2	0
47	Influence of conformational molecular dynamics on matter wave interferometry. Physical Review A, 2010, 81, .	2.5	33
48	Note: A helical velocity selector for continuous molecular beams. Review of Scientific Instruments, 2010, 81, 106107.	1.3	6
49	Wave and Particle in Molecular Interference Lithography. Physical Review Letters, 2009, 103, 263601.	7.8	52
50	Theory and experimental verification of Kapitza–Dirac–Talbot–Lau interferometry. New Journal of Physics, 2009, 11, 043032.	2.9	74
51	Interaction kinetics of atoms and molecules on carbon nanotube surfaces. Surface Science, 2009, 603, 1853-1862.	1.9	5
52	UV and VUV Ionization of Organic Molecules, Clusters, and Complexes. Journal of Physical Chemistry A, 2009, 113, 9952-9957.	2.5	24
53	Gas-phase formation of large neutral alkaline-earth metal tryptophan complexes. Journal of the American Society for Mass Spectrometry, 2008, 19, 1021-1026.	2.8	22
54	Matterâ€Wave Metrology as a Complementary Tool for Mass Spectrometry. Angewandte Chemie - International Edition, 2008, 47, 6195-6198.	13.8	45

#	Article	IF	CITATIONS
55	Cover Picture: Matter-Wave Metrology as a Complementary Tool for Mass Spectrometry (Angew.) Tj ETQq1	1 0.784314 13.8	rgBT ₀ Overlock
56	Absolute absorption spectroscopy based on molecule interferometry. Physical Review A, 2008, 78, .	2.5	18
57	Gas phase sorting of fullerenes, polypeptides and carbon nanotubes. Nanotechnology, 2008, 19, 045502.	2.6	12
58	Pump-Probe Spectroscopy of Exciton Dynamics in (6,5) Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3831-3835.	3.1	105
59	Thermal and electrical properties of porphyrin derivatives and their relevance for molecule interferometry. Journal of Chemical Physics, 2007, 126, 164304.	3.0	17
60	A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Physics, 2007, 3, 711-715.	16.7	175
61	Cold Beams of Biomolecules for Quantum Optics. Acta Physica Hungarica A Heavy Ion Physics, 2006, 26, 87-94.	0.4	6
62	Exciton dynamics probed in carbon nanotube suspensions with narrow diameter distribution. Physica Status Solidi (B): Basic Research, 2006, 243, 3186-3191.	1.5	10
63	Thermal desorption of gases and solvents from graphite and carbon nanotube surfaces. Carbon, 2006, 44, 2931-2942.	10.3	160
64	Spectroscopy of Single- and Double-Wall Carbon Nanotubes in Different Environments. Nano Letters, 2005, 5, 511-514.	9.1	199
65	Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B, 2004, 69, .	3.2	972
66	Interaction of molecular oxygen with single-wall carbon nanotube bundles and graphite. Surface Science, 2003, 532-535, 852-856.	1.9	49
67	Interaction ofC60with Carbon Nanotubes and Graphite. Physical Review Letters, 2003, 90, 095501.	7.8	203
68	Wetting of Single-Wall Carbon Nanotube Ropes and Graphite. AIP Conference Proceedings, 2003, , .	0.4	0
69	Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite. Physical Review B, 2002, 66, .	3.2	177
70	Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles. Chemical Physics Letters, 2002, 363, 252-260.	2.6	56