Cheng-Kang Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108563/publications.pdf

Version: 2024-02-01

147786 149686 3,592 102 31 citations h-index papers

56 g-index 103 103 103 5300 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Polynorbornene-derived block copolymer micelles via ringâ€opening metathesis polymerization with capacity of hydrogen sulfide generation. European Polymer Journal, 2022, 173, 111294.	5.4	1
2	Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate. Applied Biochemistry and Biotechnology, 2021, 193, 1284-1295.	2.9	55
3	The green synthesis of a palm empty fruit bunch-derived sulfonated carbon acid catalyst and its performance for cassava peel starch hydrolysis. RSC Advances, 2021, 11, 6449-6455.	3.6	3
4	Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. International Journal of Biological Macromolecules, 2021, 176, 157-164.	7.5	29
5	Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. Biosensors, 2021, 11, 295.	4.7	66
6	Efficient Design to Monitor the Siteâ€specific Sustained Release of a Nonâ€Emissive Anticancer Drug. Chemistry - an Asian Journal, 2021, 16, 2552-2558.	3.3	5
7	Class I hydrophobin fusion with cellulose binding domain for its soluble expression and facile purification. International Journal of Biological Macromolecules, 2021, 193, 38-43.	7. 5	7
8	Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS Applied Bio Materials, 2021, 4, 8325-8332.	4.6	8
9	Nanofibrous Membrane with Encapsulated Glucose Oxidase for Self-Sustained Antimicrobial Applications. Membranes, 2021, 11, 997.	3.0	4
10	Surface Functionalization of Poly(N-Vinylpyrrolidone) onto Poly(Dimethylsiloxane) for Anti-Biofilm Application. Applied Biochemistry and Biotechnology, 2020, 191, 29-44.	2.9	18
11	Cellulose binding domain fusion enhanced soluble expression of fructosyl peptide oxidase and its simultaneous purification and immobilization. International Journal of Biological Macromolecules, 2019, 133, 980-986.	7.5	9
12	Removal of Pb(II) and As(V) using magnetic nanoparticles coated montmorillonite via one-pot solvothermal reaction as adsorbent. Journal of Environmental Chemical Engineering, 2019, 7, 103000.	6.7	47
13	Facile coating on microporous polypropylene membrane for antifouling microfiltration using comb-shaped poly(N-vinylpyrrolidone) with multivalent catechol. Journal of Membrane Science, 2019, 574, 164-173.	8.2	30
14	Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohydrate Polymers, 2018, 187, 1-7.	10.2	24
15	Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H 2 O 2 in food. Journal of Food and Drug Analysis, 2018, 26, 662-669.	1.9	33
16	Flexible Metal–Organic Framework-Bacterial Cellulose Nanocomposite for Iodine Capture. Crystal Growth and Design, 2018, 18, 356-363.	3.0	46
17	Facile protein-resistant and anti-biofilm surface coating based on catechol-conjugated poly(N-vinylpyrrolidone). Colloid and Polymer Science, 2018, 296, 1173-1182.	2.1	9
18	Twofold enhanced dispersin B activity by N-terminal fusion to silver-binding peptide for biofilm eradication. International Journal of Biological Macromolecules, 2018, 118, 419-426.	7.5	22

#	Article	IF	Citations
19	Recombinant fructosyl peptide oxidase preparation and its immobilization on polydopamine coating for colorimetric determination of HbA1c. International Journal of Biological Macromolecules, 2018, 120, 325-331.	7.5	5
20	Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli. Carbohydrate Polymers, 2017, 164, 109-117.	10.2	32
21	Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. Journal of Environmental Chemical Engineering, 2017, 5, 2171-2175.	6.7	84
22	lodine-loaded metal organic framework as growth-triggered antimicrobial agent. Materials Science and Engineering C, 2017, 76, 477-482.	7.3	81
23	Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials. Materials Science and Engineering C, 2017, 73, 544-551.	7.3	34
24	Hydrophobically modified chitosan sponge preparation and its application for anionic dye removal. Journal of Environmental Chemical Engineering, 2017, 5, 5688-5694.	6.7	10
25	Constitutive expression of recombinant human hyaluronidase PH20 by Pichia pastoris. Journal of Bioscience and Bioengineering, 2016, 122, 673-678.	2.2	13
26	Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, 2016, 53, 98-103.	10.7	81
27	Carbon-based strong solid acid for cornstarch hydrolysis. Journal of Solid State Chemistry, 2015, 230, 163-168.	2.9	47
28	Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement. Biotechnology and Bioprocess Engineering, 2015, 20, 18-25.	2.6	50
29	Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal. Industrial & Lamp; Engineering Chemistry Research, 2015, 54, 9270-9277.	3.7	28
30	Bactericidal magnetic nanoparticles with iodine loaded on surface grafted poly(N-vinylpyrrolidone). Journal of Materials Chemistry B, 2015, 3, 840-848.	5.8	28
31	Simultaneous Saccharification and Fermentation of Waste Textiles for Ethanol Production. BioResources, 2014, 9, .	1.0	16
32	An amphipathic polypeptide derived from polyâ€Ĵ³â€glutamic acid for the stabilization of membrane proteins. Protein Science, 2014, 23, 1800-1807.	7.6	13
33	Facile microencapsulation of curcumin in acetylated starch microparticles. Journal of Microencapsulation, 2014, 31, 344-349.	2.8	7
34	One-step purification of delipidated Bacteriorhodopsin by aqueous-three-phase system from purple membrane of Halobacterium. Food and Bioproducts Processing, 2014, 92, 113-119.	3.6	7
35	A chitin nanofibril reinforced multifunctional monolith poly(vinyl alcohol) cryogel. Journal of Materials Chemistry B, 2014, 2, 4108-4113.	5.8	23
36	Facile isolation of purple membrane from Halobacterium salinarum via aqueous-two-phase system. Protein Expression and Purification, 2013, 89, 219-224.	1.3	22

#	Article	IF	Citations
37	Antibacterial and biocompatible surfaces based on dopamine autooxidized silver nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 303-310.	2.1	37
38	Glutaraldehyde Vapor Cross-linked Nanofibrous PVA Mat with in Situ Formed Silver Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4745-4752.	8.0	244
39	Epsilon-Polylysine Fermentation and its Recovery Using Carboxymethyl Cellulose (CMC)-Conjugated Magnetite. Separation Science and Technology, 2013, 48, 1086-1092.	2.5	5
40	Facile preparation of a robust and flexible antioxidant film based on self-polymerized dopamine in a microporous battery separator. RSC Advances, 2012, 2, 5127.	3.6	14
41	\hat{l}^2 -Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydrate Polymers, 2012, 90, 1509-1514.	10.2	41
42	Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers. Soft Matter, 2012, 8, 3522.	2.7	23
43	Stepwise assembly of multimetallic nanoparticles via self-polymerized polydopamine. Journal of Materials Chemistry, 2011, 21, 12316.	6.7	78
44	One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Advances, 2011, 1, 625.	3.6	105
45	Carbonaceous Materials Passivation on Amine Functionalized Magnetic Nanoparticles and Its Application for Metal Affinity Isolation of Recombinant Protein. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3342-3349.	8.0	13
46	Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization. Carbohydrate Polymers, 2011, 84, 775-780.	10.2	91
47	Characterization of hyaluronate lyase from Streptococcus pyogenes bacteriophage H4489A. Carbohydrate Polymers, 2011, 84, 1182-1191.	10.2	9
48	Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal. Journal of Hazardous Materials, 2010, 183, 853-858.	12.4	58
49	Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by <isgluconacetobacter i="" xylinus<="">. Journal of Chemical Technology and Biotechnology, 2010, 85, 1346-1352.</isgluconacetobacter>	3.2	54
50	Nonleaching antimicrobial cotton fibers for hyaluronic acid adsorption. Biochemical Engineering Journal, 2010, 53, 44-51.	3.6	23
51	Hyaluronidases, a group of glycosidases: Current and future perspectives. Carbohydrate Polymers, 2010, 81, 165-181.	10.2	91
52	Cytotoxic and antioxidant effects of unsaturated hyaluronic acid oligomers. Carbohydrate Polymers, 2010, 82, 1116-1123.	10.2	15
53	Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. Journal of Materials Chemistry, 2010, 20, 6948.	6.7	266
54	Novel carbonaceous nanocomposite pellicle based on bacterial cellulose. Green Chemistry, 2010, 12, 1454.	9.0	21

#	Article	IF	CITATIONS
55	Expression of feruloyl esterase from Aspergillus awamori in Escherichia coli: Characterization and crystal studies of the recombinant enzyme. International Journal of Biological Macromolecules, 2010, 46, 440-444.	7.5	13
56	Biocatalytic reactions in hydrophobic ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 1-12.	1.8	132
57	Self-immobilized recombinant Acetobacter xylinum for biotransformation. Biochemical Engineering Journal, 2009, 43, 78-84.	3.6	21
58	Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 2009, 100, 866-871.	9.6	144
59	Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydrate Polymers, 2009, 77, 41-46.	10.2	245
60	Subunit fusion of two yeast d-amino acid oxidases enhances their thermostability and resistance to H2O2. Biotechnology Letters, 2008, 30, 1415-1422.	2.2	10
61	Biosilicification of dualâ€fusion enzyme immobilized on magnetic nanoparticle. Biotechnology and Bioengineering, 2008, 100, 223-230.	3.3	37
62	Preparation of biocompatible membranes by electrospinning. Desalination, 2008, 233, 48-54.	8.2	22
63	Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O2 tension maximizes bacterial cellulose pellicle production. Journal of Biotechnology, 2007, 132, 38-43.	3.8	22
64	Hyaluronic acid interaction with chitosan-conjugated magnetite particles and its purification. Biochemical Engineering Journal, 2007, 33, 284-289.	3.6	32
65	Direct purification and immobilization of recombinant hyaluronan lyase from unclarified feedstock using immobilized metal affinity magnetite for oligo-hyaluronan preparation. Biochemical Engineering Journal, 2007, 37, 108-115.	3.6	6
66	Enhanced Hyaluronic Acid Production in Bacillus subtilis by Coexpressing Bacterial Hemoglobin. Biotechnology Progress, 2007, 23, 0-0.	2.6	84
67	Hyaluronic acid production by recombinant Lactococcus lactis. Applied Microbiology and Biotechnology, 2007, 77, 339-346.	3.6	103
68	Enhancement of Cellulose Pellicle Production by Constitutively Expressing Vitreoscilla Hemoglobin in Acetobacter xylinum. Biotechnology Progress, 2006, 22, 1598-1603.	2.6	14
69	Purification of recombinant hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A expressed in Escherichia coli and its application for the specific determination of hyaluronan concentration. Carbohydrate Polymers, 2006, 65, 159-164.	10.2	6
70	Synergistic effect of co-expressing d-amino acid oxidase with T7 lysozyme on self-disruption of Escherichia coli cell. Biochemical Engineering Journal, 2006, 28, 17-22.	3.6	12
71	Synthesis and Characterization of PEG-Modified Polystyrene Particles and Isothermal Equilibrium Adsorption of Bovine Serum Albumin on these Particles. Journal of Polymer Research, 2006, 13, 247-254.	2.4	6
72	Enhancement of Cellulose Pellicle Production by Constitutively Expressing <i>Vitreoscilla </i> Hemoglobin in <i>Acetobacter xylinum </i> . Biotechnology Progress, 2006, 22, 1598-1603.	2.6	33

#	Article	IF	CITATIONS
73	Expression of Bacterial Hemoglobin in the Yeast, Pichia pastoris, with a Low O2-Induced Promoter. Biotechnology Letters, 2005, 27, 1491-1497.	2.2	21
74	Adsorption of BSA on the amphiphilic PEG graft copolymer-coated particles. Colloid and Polymer Science, 2005, 283, 917-924.	2.1	6
75	Coexpression of Vitreoscilla Hemoglobin Reduces the Toxic Effect of Expression of D-Amino Acid Oxidase in E. coli. Biotechnology Progress, 2004, 20, 1359-1365.	2.6	15
76	Electrostatic interactions between amphoteric latex particles and proteins. Colloid and Polymer Science, 2004, 283, 257-264.	2.1	19
77	Expression of the gene coding for bacterial hemoglobin improves beta-galactosidase production in a recombinant Pichia pastoris. Biotechnology Letters, 2003, 25, 1457-1462.	2.2	22
78	Synthesis and characterization of amphoteric latex particles. Colloid and Polymer Science, 2003, 281, 1092-1098.	2.1	2
79	Sequential expression of recombinant proteins and their separate recovery from a Pichia pastoris cultivation. Biochemical Engineering Journal, 2003, 16, 9-16.	3.6	15
80	Effect of cell membrane of Agrobacterium radiobacter on enhancing D-amino acids production from racemic hydantoins. Enzyme and Microbial Technology, 2001, 28, 806-814.	3.2	6
81	Modeling and simulation of a pressure-swing reactor for the conversion of poorly soluble substrate by immobilized enzyme: the case of d-hydantoinase reaction. Biochemical Engineering Journal, 2001, 7, 233-239.	3.6	2
82	Purification of d-hydantoinase from adzuki bean and its immobilization for N-carbamoyl-d-phenylglycine production. Biochemical Engineering Journal, 2001, 8, 157-164.	3.6	24
83	Recombinant Escherichia coli cell for d-p-hydroxyphenylglycine production from d-N-carbamoyl-p-hydroxyphenylglycine. Enzyme and Microbial Technology, 2000, 26, 222-228.	3.2	4
84	Nonionic Surfactant-Mediated Affinity Cloud-Point Extraction of Vancomycin. Separation Science and Technology, 1999, 34, 3267-3277.	2.5	21
85	Reversed Micellar Extraction of Vancomycin: Effect of pH, Salt Concentration, and Affinity Ligands. Separation Science and Technology, 1999, 34, 1703-1715.	2.5	4
86	Enzymatic synthesis and subsequent racemization rates determination of optically active d-5-phenylhydantoin and d-5- hydroxylphenylhydantoin. Enzyme and Microbial Technology, 1999, 24, 659-666.	3.2	13
87	Production of D-P-HYDROXYPHENYLGLYCINE BY N-CARBAMOYL-D-amino Acid Amidohydrolase-Overproducing Escherichia coli Strains. Biotechnology Progress, 1999, 15, 603-607.	2.6	22
88	Synthesis and characterization of chitosan-modified polymethyl methacrylate latex particles. Journal of Polymer Science Part A, 1999, 37, 1489-1499.	2.3	13
89	Synthesis and characterization of amphiphilic poly(ethylene glycol) graft copolymers and their potential application as drug carriers. Polymer, 1998, 39, 1609-1616.	3.8	77
90	Separation of Phenylacetic Acid from 6-Aminopenicillanic Acid via Cloud-Point Extraction with N-Decyltetra(ethylene Oxide) Nonionic Surfactant. Separation Science and Technology, 1998, 33, 1003-1012.	2.5	7

#	Article	IF	CITATIONS
91	n-carbamoyl-d-p-hydroxyphenylglycine production using immobilized d-hydantoinase from recombinant E. coli. Enzyme and Microbial Technology, 1996, 19, 623-627.	3.2	22
92	Enzyme crystal embedded in latex film as immobilized enzyme. Biotechnology Letters, 1995, 9, 827-832.	0.5	0
93	Starch slurry hydrolysis using α-amylase immobilized on a hollow-fiber reactor. Enzyme and Microbial Technology, 1995, 17, 685-688.	3.2	11
94	Purification of Aspartase by Aqueous Two-Phase System and Affinity Membrane Chromatography in Sequence. Separation Science and Technology, 1995, 30, 509-519.	2.5	10
95	The Concentration Polarization Effect of a Macroligand on Affinity Ultrafiltration. Industrial & Description of Engineering Chemistry Research, 1995, 34, 2104-2109.	3.7	5
96	Lysis of Micrococcus lysodeikticus cells by lysozyme covalently immobilized on the lumen of hollow fibers. Biotechnology Letters, 1994, 8, 193-198.	0.5	12
97	Macroligandd-alanyl-d-alanine-dextran for vancomycin purification. Applied Biochemistry and Biotechnology, 1994, 44, 21-30.	2.9	6
98	Cyclic Operation of Forced Flow Electrokinetic Separation for Simultaneous Separation and Concentration of Charged Molecules. Separation Science and Technology, 1993, 28, 1211-1231.	2.5	4
99	Vancomycin partitioning in aqueous two-phase systems: Effects of pH, salts, and an affinity ligand. Biotechnology and Bioengineering, 1990, 35, 408-416.	3.3	50
100	Polydispersivity effects on the behavior of aqueous two-phase two-polymer systems. Industrial & Engineering Chemistry Research, 1989, 28, 1537-1542.	3.7	30
101	The Design of Novel Scaffolds by Integrating Microbial Cellulose onto Plasma Treated Polypropylene. Advanced Materials Research, 0, 47-50, 1371-1374.	0.3	3
102	The fluorescence turn-off mechanism of a norbornene-derived homopolymer – an Al ³⁺ colorimetric and fluorescent chemosensor. Materials Advances, 0, , .	5 . 4	6