
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11084809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 2018, 92, 112-224.	16.0	4,751
2	Recent advances in friction-stir welding – Process, weldment structure and properties. Progress in Materials Science, 2008, 53, 980-1023.	16.0	1,729
3	Review: Friction stir welding tools. Science and Technology of Welding and Joining, 2011, 16, 325-342.	1.5	623
4	An improved prediction of residual stresses and distortion in additive manufacturing. Computational Materials Science, 2017, 126, 360-372.	1.4	543
5	Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Materialia, 2007, 55, 883-895.	3.8	528
6	Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1988, 19, 483-491.	0.5	461
7	Physical processes in fusion welding. Reviews of Modern Physics, 1995, 67, 85-112.	16.4	443
8	Evolution of solidification texture during additive manufacturing. Scientific Reports, 2015, 5, 16446.	1.6	337
9	Scientific, technological and economic issues in metal printing and their solutions. Nature Materials, 2019, 18, 1026-1032.	13.3	336
10	Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. Journal Physics D: Applied Physics, 2007, 40, 5753-5766.	1.3	333
11	Printability of alloys for additive manufacturing. Scientific Reports, 2016, 6, 19717.	1.6	319
12	Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1247-1259.	1.1	288
13	Current issues and problems in laser welding of automotive aluminium alloys. International Materials Reviews, 1999, 44, 238-266.	9.4	277
14	Building blocks for a digital twin of additive manufacturing. Acta Materialia, 2017, 135, 390-399.	3.8	258
15	Heat transfer and fluid flow during laser spot welding of 304 stainless steel. Journal Physics D: Applied Physics, 2003, 36, 1388-1398.	1.3	253
16	Heat transfer and material flow during laser assisted multi-layer additive manufacturing. Journal of Applied Physics, 2014, 116, .	1.1	249
17	Mechanistic models for additive manufacturing of metallic components. Progress in Materials Science, 2021, 116, 100703.	16.0	246
18	Friction stir welding of dissimilar alloys – a perspective. Science and Technology of Welding and Joining, 2010, 15, 266-270.	1.5	243

#	Article	IF	CITATIONS
19	Current Issues and Problems in Welding Science. Science, 1992, 257, 497-502.	6.0	224
20	Metallurgy, mechanistic models and machine learning in metal printing. Nature Reviews Materials, 2021, 6, 48-68.	23.3	220
21	Toward optimum friction stir welding tool shoulder diameter. Scripta Materialia, 2011, 64, 9-12.	2.6	219
22	Phase transformation dynamics during welding of Ti–6Al–4V. Journal of Applied Physics, 2004, 95, 8327-8339.	1.1	214
23	Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Science and Technology of Welding and Joining, 2006, 11, 526-537.	1.5	206
24	Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process. Materials Science and Technology, 2015, 31, 924-930.	0.8	202
25	Problems and issues in laser-arc hybrid welding. International Materials Reviews, 2009, 54, 223-244.	9.4	193
26	Origin of grain orientation during solidification of an aluminum alloy. Acta Materialia, 2016, 115, 123-131.	3.8	189
27	Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel. Journal of Applied Physics, 2003, 93, 3022-3033.	1.1	177
28	Strains and strain rates during friction stir welding. Scripta Materialia, 2009, 61, 863-866.	2.6	171
29	Building digital twins of 3D printing machines. Scripta Materialia, 2017, 135, 119-124.	2.6	170
30	Heat and fluid flow in additive manufacturing – Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Computational Materials Science, 2018, 150, 369-380.	1.4	169
31	Weld metal composition change during conduction mode laser welding of aluminum alloy 5182. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2001, 32, 163-172.	1.0	167
32	Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scripta Materialia, 2009, 60, 13-16.	2.6	154
33	Mitigation of thermal distortion during additive manufacturing. Scripta Materialia, 2017, 127, 79-83.	2.6	151
34	Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. Journal of Manufacturing Processes, 2018, 36, 442-449.	2.8	141
35	Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy. Acta Materialia, 2017, 126, 413-425.	3.8	132
36	Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing. International Journal of Heat and Mass Transfer, 2018, 127, 1084-1094.	2.5	130

#	Article	IF	CITATIONS
37	NUMERICAL PREDICTION OF FLUID FLOW AND HEAT TRANSFER IN WELDING WITH A MOVING HEAT SOURCE. Numerical Heat Transfer; Part A: Applications, 1996, 29, 115-129.	1.2	127
38	Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion. Computational Materials Science, 2018, 150, 304-313.	1.4	127
39	Modeling of temperature field and solidified surface profile during gas–metal arc fillet welding. Journal of Applied Physics, 2003, 94, 2667-2679.	1.1	126
40	Critical assessment: Friction stir welding of steels. Science and Technology of Welding and Joining, 2009, 14, 193-196.	1.5	121
41	Free surface flow and heat transfer in conduction mode laser welding. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1988, 19, 851-858.	0.5	119
42	Heat transfer and fluid flow in laser microwelding. Journal of Applied Physics, 2005, 97, 084909.	1.1	117
43	Heat transfer and fluid flow in additive manufacturing. Journal of Laser Applications, 2013, 25, .	0.8	117
44	Dimensionless numbers in additive manufacturing. Journal of Applied Physics, 2017, 121, .	1.1	115
45	Heat transfer and fluid flow during electron beam welding of 21Cr–6Ni–9Mn steel and Ti–6Al–4V alloy. Journal Physics D: Applied Physics, 2009, 42, 025503.	1.3	113
46	Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium. Acta Materialia, 2000, 48, 4813-4825.	3.8	112
47	A smart model to estimate effective thermal conductivity and viscosity in the weld pool. Journal of Applied Physics, 2004, 95, 5230-5240.	1.1	106
48	Development of macro- and microstructures of carbon–manganese low alloy steel welds: inclusion formation. Materials Science and Technology, 1995, 11, 186-199.	0.8	104
49	Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. Journal of Applied Physics, 2003, 93, 10089-10096.	1.1	104
50	Heat and fluid flow in complex joints during gas metal arc welding—Part I: Numerical model of fillet welding. Journal of Applied Physics, 2004, 95, 5210-5219.	1.1	103
51	Mechanism of alloying element vaporization during laser welding. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1987, 18, 733-740.	0.5	102
52	Heat transfer during Nd: Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 957-967.	1.4	101
53	Effect of temperature and composition on surface tension in Fe-Ni-Cr alloys containing sulfur. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1991, 22, 557-560.	0.5	98
54	Kinetic modeling of phase transformations occurring in the HAZ of C-Mn steel welds based on direct observations. Acta Materialia, 2003, 51, 3333-3349.	3.8	97

#	Article	IF	CITATIONS
55	A Convective Heat-Transfer Model for Partial and Full Penetration Keyhole Mode Laser Welding of a Structural Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 98-112.	1.1	97
56	Numerical simulation of heat transfer and fluid flow in GTA/Laser hybrid welding. Science and Technology of Welding and Joining, 2008, 13, 683-693.	1.5	96
57	Calculation of three-dimensional electromagnetic force field during arc welding. Journal of Applied Physics, 2003, 94, 1267-1277.	1.1	95
58	Tool Geometry for Friction Stir Welding—Optimum Shoulder Diameter. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2716-2722.	1.1	94
59	The Hardness of Additively Manufactured Alloys. Materials, 2018, 11, 2070.	1.3	94
60	Load bearing capacity of tool pin during friction stir welding. International Journal of Advanced Manufacturing Technology, 2012, 61, 911-920.	1.5	93
61	Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1999, 30, 483-493.	1.0	91
62	Residual stresses and distortion in additively manufactured compositionally graded and dissimilar joints. Computational Materials Science, 2018, 143, 325-337.	1.4	91
63	Crystal growth during keyhole mode laser welding. Acta Materialia, 2017, 133, 10-20.	3.8	86
64	Modeling and real time mapping of phases during GTA welding of 1005 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 333, 320-335.	2.6	79
65	Heat and fluid flow in complex joints during gas metal arc welding—Part II: Application to fillet welding of mild steel. Journal of Applied Physics, 2004, 95, 5220-5229.	1.1	78
66	Alloying element vaporization during laser spot welding of stainless steel. Journal Physics D: Applied Physics, 2003, 36, 3079-3088.	1.3	77
67	A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding. Journal of Applied Physics, 2007, 101, 054909.	1.1	75
68	Energy absorption by metalâ€vaporâ€dominated plasma during carbon dioxide laser welding of steels. Journal of Applied Physics, 1990, 68, 2045-2050.	1.1	74
69	A perspective on residual stresses in welding. Science and Technology of Welding and Joining, 2011, 16, 204-208.	1.5	72
70	An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations. Acta Materialia, 2008, 56, 2133-2146.	3.8	70
71	Back-of-the-envelope calculations in friction stir welding – Velocities, peak temperature, torque, and hardness. Acta Materialia, 2011, 59, 2020-2028.	3.8	70
72	Solidification Map of a Nickel-Base Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2142-2151.	1.1	68

#	Article	IF	CITATIONS
73	A heat-transfer and fluid-flow-based model to obtain a specific weld geometry using various combinations of welding variables. Journal of Applied Physics, 2005, 98, 044902.	1.1	67
74	Alloying element vaporization and weld pool temperature during laser welding of AlSl 202 stainless steel. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1984, 15, 641-644.	0.5	66
75	Probing temperature during laser spot welding from vapor composition and modeling. Journal of Applied Physics, 2003, 94, 6949-6958.	1.1	66
76	Calculation of weld metal composition change in high-power conduction mode carbon dioxide laser-welded stainless steels. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1993, 24, 145-155.	0.5	65
77	Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718. Additive Manufacturing, 2019, 25, 448-459.	1.7	64
78	Heat Transfer and Fluid Flow during Gas-Metal-Arc Fillet Welding for Various Joint Configurations and Welding Positions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 506-519.	1.1	63
79	Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy. International Journal of Materials Research, 2008, 99, 434-444.	0.1	60
80	Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing. Additive Manufacturing, 2019, 25, 511-521.	1.7	59
81	Liquid metal expulsion during laser irradiation. Journal of Applied Physics, 1992, 72, 3317-3322.	1.1	57
82	Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization. Journal Physics D: Applied Physics, 2004, 37, 140-150.	1.3	56
83	Probing laser induced metal vaporization by gas dynamics and liquid pool transport phenomena. Journal of Applied Physics, 1991, 70, 1313-1319.	1.1	52
84	Phenomenological Modeling of Fusion Welding Processes. MRS Bulletin, 1994, 19, 29-35.	1.7	52
85	Emission spectroscopy of plasma during laser welding of AISI 201 stainless steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1989, 20, 277-286.	1.0	51
86	Non-isothermal grain growth in metals and alloys. Materials Science and Technology, 2006, 22, 253-278.	0.8	50
87	Improving reliability of heat and fluid flow calculation during conduction mode laser spot welding by multivariable optimisation. Science and Technology of Welding and Joining, 2006, 11, 143-153.	1.5	49
88	Composition change of stainless steel during microjoining with short laser pulse. Journal of Applied Physics, 2004, 96, 4547-4555.	1.1	48
89	Cooling rates and peak temperatures during friction stir welding of a high-carbon steel. Scripta Materialia, 2015, 94, 36-39.	2.6	48
90	A pathway to microstructural refinement through double pulsed gas metal arc welding. Scripta Materialia. 2017. 134. 61-65.	2.6	48

#	Article	IF	CITATIONS
91	Special features of double pulsed gas metal arc welding. Journal of Materials Processing Technology, 2018, 251, 369-375.	3.1	48
92	Liquid metal expulsion during laser spot welding of 304 stainless steel. Journal Physics D: Applied Physics, 2006, 39, 525-534.	1.3	47
93	Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam. Journal of Applied Physics, 2006, 100, 034903.	1.1	46
94	Unusual wavy weld pool boundary from dimensional analysis. Scripta Materialia, 2009, 60, 68-71.	2.6	46
95	Dimensionless correlation to estimate peak temperature during friction stir welding. Science and Technology of Welding and Joining, 2006, 11, 606-608.	1.5	44
96	Modeling of ferrite formation in a duplex stainless steel weld considering non-uniform starting microstructure. Acta Materialia, 2005, 53, 4441-4453.	3.8	43
97	Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding. Science and Technology of Welding and Joining, 2012, 17, 460-466.	1.5	42
98	Real time monitoring of laser beam welding keyhole depth by laser interferometry. Science and Technology of Welding and Joining, 2014, 19, 560-564.	1.5	42
99	Friction stir welding of mild steel: Tool durability and steel microstructure. Materials Science and Technology, 2014, 30, 1050-1056.	0.8	40
100	Residual stresses in wire-arc additive manufacturing – Hierarchy of influential variables. Additive Manufacturing, 2020, 35, 101355.	1.7	40
101	Effects of oxygen and sulfur on alloying element vaporization rates during laser welding. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1988, 19, 967-972.	0.5	39
102	Modeling of inclusion growth and dissolution in the weld pool. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 161-169.	1.0	38
103	Machine learning based hierarchy of causative variables for tool failure in friction stir welding. Acta Materialia, 2020, 192, 67-77.	3.8	37
104	Material adhesion and stresses on friction stir welding tool pins. Science and Technology of Welding and Joining, 2014, 19, 534-540.	1.5	36
105	Guaranteed fillet weld geometry from heat transfer model and multivariable optimization. International Journal of Heat and Mass Transfer, 2004, 47, 5793-5806.	2.5	35
106	Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model. Journal Physics D: Applied Physics, 2006, 39, 1257-1266.	1.3	34
107	Absorption and transport of hydrogen during gas metal arc welding of low alloy steel. Science and Technology of Welding and Joining, 1997, 2, 174-184.	1.5	33
108	Integrated modelling of thermal cycles, austenite formation, grain growth and decomposition in the heat affected zone of carbon steel. Science and Technology of Welding and Joining, 2005, 10, 574-582.	1.5	33

#	Article	IF	CITATIONS
109	A computational procedure for finding multiple solutions of convective heat transfer equations. Journal Physics D: Applied Physics, 2005, 38, 2977-2985.	1.3	32
110	Tool durability maps for friction stir welding of an aluminium alloy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 3552-3570.	1.0	32
111	Modeling of interfacial phenomena in welding. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1990, 21, 600-603.	0.5	31
112	Optimization of the johnson-mehl-avarami equation parameters for α-ferrite to γ-austenite transformation in steel welds using a genetic algorithm. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 15-22.	1.1	31
113	Numerical modeling of enhanced nitrogen dissolution during gas tungsten Arc welding. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 1371-1385.	1.0	30
114	A Genetic Algorithm-Assisted Inverse Convective Heat Transfer Model for Tailoring Weld Geometry. Materials and Manufacturing Processes, 2009, 24, 384-397.	2.7	28
115	The effects of Prandtl number on wavy weld boundary. International Journal of Heat and Mass Transfer, 2009, 52, 3790-3798.	2.5	28
116	Printability of 316 stainless steel. Science and Technology of Welding and Joining, 2019, 24, 412-419.	1.5	28
117	Nitrogen activity determination in plasmas. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1992, 23, 207-214.	0.5	27
118	Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma. Journal of Applied Physics, 2011, 109, .	1.1	27
119	Coarsening of oxide inclusions in low alloy steel welds. Science and Technology of Welding and Joining, 1996, 1, 17-27.	1.5	26
120	Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys. Journal of Applied Physics, 2005, 97, 094912.	1.1	24
121	Time resolved X-ray diffraction observations of phase transformations in transient arc welds. Science and Technology of Welding and Joining, 2008, 13, 265-277.	1.5	24
122	Role of surface-active elements during keyhole-mode laser welding. Journal Physics D: Applied Physics, 2011, 44, 485203.	1.3	24
123	Quantitative modelling of motion, temperature gyrations, and growth of inclusions in weld pool. Science and Technology of Welding and Joining, 1998, 3, 33-41.	1.5	23
124	Grain topology in Ti–6Al–4V welds—Monte Carlo simulation and experiments. Journal Physics D: Applied Physics, 2004, 37, 2191-2196.	1.3	22
125	Interfacial tension between low pressure argon plasma and molten copper and iron. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1987, 18, 597-601.	0.5	21
126	Enhanced dissolution of nitrogen during gas tungsten arc welding of steels. Science and Technology of Welding and Joining, 1998, 3, 190-203.	1.5	21

#	Article	IF	CITATIONS
127	Influence of oxygen on weld geometry in fibre laser and fibre laser–GMA hybrid welding. Science and Technology of Welding and Joining, 2011, 16, 166-173.	1.5	20
128	Absorption of CO2 laser beam by AISI 4340 steel. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1985, 16, 853-856.	0.5	19
129	Asymmetry in steel welds with dissimilar amounts of sulfur. Scripta Materialia, 2015, 108, 88-91.	2.6	19
130	Origin of wavy weld boundary. Journal of Applied Physics, 2009, 105, .	1.1	15
131	Cooling rate in 800 to 500°C range from dimensional analysis. Science and Technology of Welding and Joining, 2010, 15, 423-427.	1.5	15
132	Tailoring complex weld geometry through reliable heat-transfer and fluid-flow calculations and a genetic algorithm. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2725-2735.	1.1	14
133	Improving reliability of modelling heat and fluid flow in complex gas metal arc fillet welds—part I: an engineering physics model. Journal Physics D: Applied Physics, 2005, 38, 119-126.	1.3	14
134	Improving reliability of modelling heat and fluid flow in complex gas metal arc fillet welds—part II: application to welding of steel. Journal Physics D: Applied Physics, 2005, 38, 127-134.	1.3	12
135	Weld metal microstructure prediction from fundamentals of transport phenomena and phase transformation theory. Science and Technology of Welding and Joining, 1997, 2, 53-58.	1.5	11
136	Solidification cracking of a nickel alloy during high-power keyhole mode laser welding. Journal of Materials Processing Technology, 2022, 305, 117576.	3.1	11
137	Laser-silicon interaction for selective emitter formation in photovoltaics. II. Model applications. Journal of Applied Physics, 2012, 112, .	1.1	10
138	Grain Growth Modeling for Additive Manufacturing of Nickel Based Superalloys. , 2016, , 265-269.		9
139	Analytical estimation of fusion zone dimensions and cooling rates in part scale laser powder bed fusion. Additive Manufacturing, 2021, 46, 102222.	1.7	9
140	A Smart Bi-Directional Model of Heat Transfer and Free Surface Flow in Gas-Metal-Arc Fillet Welding for Practising Engineers. Welding in the World, Le Soudage Dans Le Monde, 2005, 49, 32-48.	1.3	7
141	Evolution of laser-fired aluminum-silicon contact geometry in photovoltaic devices. Journal of Applied Physics, 2012, 111, 024903.	1.1	6
142	Laser weld geometry and microstructure of cast Uranium-6 wt% niobium alloy. Journal of Nuclear Materials, 2019, 514, 224-237.	1.3	6
143	Absorption and transport of hydrogen during gas metal arc welding of low alloy steel. Science and Technology of Welding and Joining, 1997, 2, 174-184.	1.5	6
144	Control of asymmetric track geometry in printed parts of stainless steels, nickel, titanium and aluminum alloys. Computational Materials Science, 2020, 182, 109791.	1.4	5

#	Article	IF	CITATIONS
145	Heat and Fluid Flow Modeling to Examine 3D-Printability of Alloys. , 2016, , 471-478.		4
146	Grain Growth Modeling for Additive Manufacturing of Nickel Based Superalloys. , 0, , 265-269.		4
147	Deposit geometry and oxygen concentration spatial variations due to composition change in printed functionally graded components. International Journal of Heat and Mass Transfer, 2021, 164, 120526.	2.5	2
148	1000 gems: Celebration of <i>STWJ</i> . Science and Technology of Welding and Joining, 2011, 16, 285-287.	1.5	0