Shaorong Chong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11084208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nature Communications, 2022, 13, .	12.8	18
2	Cell-free protein synthesis of CRISPR ribonucleoproteins (RNP). Methods in Enzymology, 2021, 659, 371-389.	1.0	2
3	Rapid isolation of antigen-specific B-cells using droplet microfluidics. RSC Advances, 2020, 10, 27006-27013.	3.6	30
4	Functionally diverse type V CRISPR-Cas systems. Science, 2019, 363, 88-91.	12.6	342
5	Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Molecular Cell, 2018, 70, 327-339.e5.	9.7	356
6	Bottom-up single-molecule strategy for understanding subunit function of tetrameric β-galactosidase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8346-8351.	7.1	14
7	Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli. PLoS ONE, 2016, 11, e0162020.	2.5	33
8	A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders. Scientific Reports, 2016, 6, 22575.	3.3	12
9	One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil–water interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 608-613.	7.1	8
10	Label-free single-cell protein quantification using a drop-based mix-and-read system. Scientific Reports, 2015, 5, 12756.	3.3	26
11	Overview of Cellâ€Free Protein Synthesis: Historic Landmarks, Commercial Systems, and Expanding Applications. Current Protocols in Molecular Biology, 2014, 108, 16.30.1-11.	2.9	63
12	Protein Synthesis Using a Reconstituted Cellâ€Free System. Current Protocols in Molecular Biology, 2014, 108, 16.31.1-22.	2.9	37
13	Engineering Bacterial Transcription Regulation To Create a Synthetic <i>in Vitro</i> Two-Hybrid System for Protein Interaction Assays. Journal of the American Chemical Society, 2014, 136, 14031-14038.	13.7	16
14	Quantifying Elongation Rhythm during Full-Length Protein Synthesis. Journal of the American Chemical Society, 2013, 135, 11322-11329.	13.7	26
15	Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components. Nucleic Acids Research, 2012, 40, 7932-7945.	14.5	45
16	In vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis and detection of RNA polymerase holoenzyme. Nucleic Acids Research, 2010, 38, e141-e141.	14.5	47
17	A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnology, 2008, 8, 58.	3.3	53
18	Single-process expression and purification of multiple recombinant proteins through cocultivation and affinity purification. Analytical Biochemistry, 2008, 381, 175-177.	2.4	2

Shaorong Chong

#	Article	IF	CITATIONS
19	Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions in E. coli. Journal of Biotechnology, 2006, 125, 48-56.	3.8	38
20	Simulation of Large-Scale Production of a Soluble Recombinant Protein Expressed in <1>Escherichia coli 1 Using an Intein-Mediated Purification System. Applied Biochemistry and Biotechnology, 2005, 126, 093-118.	2.9	11
21	Productive interaction of chaperones with substrate protein domains allows correct folding of the downstream GFP domain. Gene, 2005, 350, 25-31.	2.2	9
22	Harnessing Inteins for Protein Purification and Characterization. , 2005, , 273-292.		5
23	Study of Protein Splicing and Intein-Mediated Peptide Bond Cleavage under High-Cell-Density Conditions. Biotechnology Progress, 2003, 19, 1085-1090.	2.6	10
24	Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 478-483.	7.1	37
25	Intein-mediated Protein Purification. , 2003, , 172-193.		2
26	Intein-Mediated Rapid Purification of Cre Recombinase. Protein Expression and Purification, 2001, 22, 135-140.	1.3	43
27	Construction of a mini-intein fusion system to allow both direct monitoring of soluble protein expression and rapid purification of target proteins. Gene, 2001, 275, 241-252.	2.2	36
28	[24] Fusions to self-splicing inteins for protein purification. Methods in Enzymology, 2000, 326, 376-418.	1.0	74
29	Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene, 1999, 231, 1-13.	2.2	204
30	Modulation of Protein Splicing of the Saccharomyces cerevisiae Vacuolar Membrane ATPase Intein. Journal of Biological Chemistry, 1998, 273, 10567-10577.	3.4	158
31	Protein Splicing of the Saccharomyces cerevisiae VMA Intein without the Endonuclease Motifs. Journal of Biological Chemistry, 1997, 272, 15587-15590.	3.4	108
32	Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene, 1997, 192, 271-281.	2.2	579
33	Cysteine 265 is in the active site of, but is not essential for catalysis by tRNA-guanine transglycosylase (TGT) from Escherichia coli. The Protein Journal, 1997, 16, 11-17.	1.1	5
34	X-ray Absorption Spectroscopy of the Zinc Site in tRNA-Guanine Transglycosylase fromEscherichiacoliâ€. Biochemistry, 1996, 35, 3133-3139.	2.5	16
35	Protein Splicing Involving the Saccharomyces cerevisiae VMA Intein. Journal of Biological Chemistry, 1996, 271, 22159-22168.	3.4	233
36	Site-directed mutagenesis of Escherichia coli tRNA-Guanine Transglycosylase zinc metalloprotein to identify zinc ligands. Biochemistry, 1995, 34, 3694-3701.	2.5	33

#	Article	IF	CITATIONS
37	Serine 90 Is Required for Enzymic Activity by tRNA-Guanine Transglycosylase from Escherichia coli. Biochemistry, 1994, 33, 7041-7046.	2.5	29
38	tRNA-Guanine Transglycosylase from Escherichia coli. Journal of Molecular Biology, 1993, 231, 489-497.	4.2	43