
Tung T Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11082876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-Free Annulation of 2-Nitrobenzyl Alcohols and Tetrahydroisoquinolines toward the Divergent Synthesis of Quinazolinones and Quinazolinethiones. Journal of Organic Chemistry, 2022, 87, 103-113.	1.7	10
2	Recent Examples in the Synthesis and Functionalization of Câ^'H Bonds in Pyrrolo/Indolo [1,2â€ <i>a</i>]Quinoxalines. ChemistrySelect, 2022, 7, .	0.7	1
3	Step- and atom-economical synthesis of 2-aryl benzimidazoles via the sulfur-mediated redox condensation between o-nitroanilines and aryl methanols. Tetrahedron, 2022, 121, 132918.	1.0	3
4	Copper-catalyzed synthesis of pyrido-fused quinazolinones from 2-aminoarylmethanols and isoquinolines or tetrahydroisoquinolines. Organic and Biomolecular Chemistry, 2021, 19, 4726-4732.	1.5	12
5	Direct halogenation of the C1 H bond in pyrrolo[1,2–a]quinoxalines. Tetrahedron Letters, 2021, 67, 152879.	0.7	10
6	Oxidative Nucleophilic Functionalization of Nitrobenzene and 3â€Nitroacetophenones with Nâ^'H Bonds. ChemistrySelect, 2021, 6, 8971-8973.	0.7	0
7	Synthesis of primary <i>N</i> -arylthioglyoxamides from anilines, elemental sulfur and primary C–H bonds in acetophenones. RSC Advances, 2020, 10, 44743-44746.	1.7	4
8	Ready and selective access to 2-arylquinazolines from α-amino acids via a new solvent-free domino transformation under synergistic nano Fe-Mo-Se catalyst. Journal of Industrial and Engineering Chemistry, 2020, 92, 96-100.	2.9	2
9	New synthesis of 2-aroylbenzothiazoles <i>via</i> metal-free domino transformations of anilines, acetophenones, and elemental sulfur. RSC Advances, 2020, 10, 18423-18433.	1.7	11
10	Sulfur-Mediated Decarboxylative Coupling of 2-Nitrobenzyl Alcohols and Arylacetic Acids. Synlett, 2020, 31, 1112-1116.	1.0	4
11	Functionalization of Primary C–H Bonds in Picolines toward Pyridylthioamides. Bulletin of the Chemical Society of Japan, 2020, 93, 783-789.	2.0	4
12	Functionalization of C–H bonds in acetophenone oximes with arylacetic acids and elemental sulfur. RSC Advances, 2020, 10, 11024-11032.	1.7	4
13	Sulfur-mediated annulation of 1,2-phenylenediamines towards benzofuro- and benzothieno-quinoxalines. Organic and Biomolecular Chemistry, 2020, 18, 5652-5659.	1.5	5
14	Copper-Promoted Coupling of Propiophenones and Arylhydrazines for the Synthesis of 1,3-Diarylpyrazoles. Synlett, 2020, 31, 801-804.	1.0	4
15	2â€Benzoyl Thienothiazoles from Annulation of Câ^'H Bonds in Acetophenone Oximes. Asian Journal of Organic Chemistry, 2020, 9, 622-625.	1.3	3
16	Direct oxidative C(sp 3)─H/C(sp 2)─H coupling reaction using recyclable Srâ€doped LaCoO 3 perovskite catalyst. Applied Organometallic Chemistry, 2020, 34, e5515.	1.7	5
17	Synthesis of triphenylpyridines <i>via</i> an oxidative cyclization reaction using Sr-doped LaCoO ₃ perovskite as a recyclable heterogeneous catalyst. RSC Advances, 2019, 9, 23876-23887.	1.7	9
18	A new pathway to pyrrolo[1,2-a]quinoxalines via solvent-free one-pot strategy utilizing FeMoSe nanosheets as efficient recyclable synergistic catalyst. Journal of Catalysis, 2019, 377, 163-173.	3.1	13

TUNG T NGUYEN

#	Article	IF	CITATIONS
19	Homo- and Heteroannulation of sp3 C–H Bonds in Acetophenones for Divergent Synthesis of Thienothiazoles. Organic Letters, 2019, 21, 8795-8799.	2.4	18
20	A Green Synthesis of <i>N</i> , <i>N</i> ―and <i>N</i> , <i>O</i> â€Heterocycles Using a Recyclable Catalyst in a Bioâ€Based Solvent. ChemistrySelect, 2019, 4, 880-883.	0.7	8
21	Aerobic, metal-free synthesis of 6 <i>H</i> -chromeno[4,3- <i>b</i>]quinolin-6-ones. RSC Advances, 2019, 9, 16215-16222.	1.7	10
22	Superparamagnetic nanoparticle-catalyzed coupling of 2-amino pyridines/pyrimidines with <i>trans</i> -chalcones. RSC Advances, 2019, 9, 5501-5511.	1.7	23
23	Functionalization of activated methylene C–H bonds with nitroarenes and sulfur for the synthesis of thioamides. Organic and Biomolecular Chemistry, 2019, 17, 8987-8991.	1.5	12
24	Synthesis of Unnatural Arundines Using a Magnetically Reusable Copper Ferrite Catalyst. Synlett, 2018, 29, 2031-2034.	1.0	10
25	Direct arylation of benzoazoles with aldehydes utilizing metal–organic framework Fe ₃ O(BDC) ₃ as a recyclable heterogeneous catalyst. RSC Advances, 2017, 7, 1423-1431.	1.7	16
26	Synthesis of aryl-substituted pyridines via cyclization of N,N-dialkylanilines with ketoxime carboxylates under metal-organic framework catalysis. Journal of Industrial and Engineering Chemistry, 2017, 54, 151-161.	2.9	5
27	Copper ferrite superparamagnetic nanoparticles as a heterogeneous catalyst for directed phenol/formamide coupling. Tetrahedron Letters, 2017, 58, 3370-3373.	0.7	18
28	Direct C–N coupling of azoles with ethers via oxidative C–H activation under metal–organic framework catalysis. Journal of Industrial and Engineering Chemistry, 2016, 44, 136-145.	2.9	17
29	Nickel-catalyzed oxidative coupling of alkynes and arylboronic acids using the metal–organic framework Ni ₂ (BDC) ₂ (DABCO) as an efficient heterogeneous catalyst. Catalysis Science and Technology, 2014, 4, 1276-1285.	2.1	34
30	Ligand-free direct C-arylation of heterocycles with aryl halides over a metal-organic framework Cu2(BPDC)2(BPY) as an efficient and robust heterogeneous catalyst. Journal of Molecular Catalysis A, 2014, 391, 74-82.	4.8	33
31	Towards applications of metal–organic frameworks in catalysis: C–H direct activation of benzoxazole with aryl boronic acids using Ni ₂ (BDC) ₂ (DABCO) as an efficient heterogeneous catalyst. Catalysis Science and Technology, 2014, 4, 369-377.	2.1	58
32	A Metal–Organic Framework Cu2(BDC)2(DABCO) as an Efficient and Reusable Catalyst for Ullmann-Type N-Arylation of Imidazoles. Catalysis Letters, 2014, 144, 1877-1883.	1.4	15
33	Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst. Journal of Catalysis, 2013, 306, 38-46.	3.1	69
34	A Copper Metal–Organic Framework as an Efficient and Recyclable Catalyst for the Oxidative Crossâ€Đehydrogenative Coupling of Phenols and Formamides. ChemCatChem, 2013, 5, 3068-3077.	1.8	47
35	Ullmann-type coupling reaction using metal-organic framework MOF-199 as an efficient recyclable solid catalyst. Applied Catalysis A: General, 2013, 457, 69-77.	2.2	42
36	Copperâ€Catalyzed Synthesis of αâ€Aryl Ketones by Metal–Organic Framework MOFâ€199 as an Efficient Heterogeneous Catalyst. ChemCatChem, 2013, 5, 1822-1831.	1.8	37

TUNG T NGUYEN

#	Article	IF	CITATIONS
37	Ligandâ€Free Copperâ€Catalyzed Coupling of Phenols with Nitroarenes by using a Metal–Organic Framework as a Robust and Recoverable Catalyst. ChemCatChem, 2013, 5, 2374-2381.	1.8	41
38	An open metal site metal–organic framework Cu(BDC) as a promising heterogeneous catalyst for the modified FriedlÃ ¤ der reaction. Applied Catalysis A: General, 2013, 464-465, 128-135.	2.2	51
39	Paal–Knorr reaction catalyzed by metal–organic framework IRMOF-3 as an efficient and reusable heterogeneous catalyst. Journal of Molecular Catalysis A, 2012, 363-364, 178-185.	4.8	46
40	The arylation of aldehydes with arylboronic acids using metal-organic framework Ni(HBTC)BPY as an efficient heterogeneous catalyst. Journal of Molecular Catalysis A, 2012, 365, 95-102.	4.8	25
41	Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Applied Catalysis A: General, 2012, 425-426, 44-52.	2.2	137