
Helio K Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11082539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of the glucosylceramide biosynthetic pathway inAspergillus nidulansandAspergillus fumigatusby inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Letters, 2002, 525, 59-64.	2.8	120
2	Characterization of Sphingolipids from Mycopathogens:  Factors Correlating with Expression of 2-Hydroxy Fatty Acyl (E)-Δ3-Unsaturation in Cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry, 1999, 38, 7294-7306.	2.5	103
3	Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li+ adduct ions. , 2000, 14, 551-563.		93
4	Structure Elucidation of Sphingolipids from the MycopathogenParacoccidioides brasiliensis:Â An Immunodominant β-Galactofuranose Residue Is Carried by a Novel Glycosylinositol Phosphorylceramide Antigenâ€. Biochemistry, 1998, 37, 8764-8775.	2.5	82
5	Loss of Histochemical Identity in Mast Cells Lacking Carboxypeptidase A. Molecular and Cellular Biology, 2005, 25, 6199-6210.	2.3	82
6	Occurrence of Heparin in the Invertebrate Styela plicata (Tunicata) Is Restricted to Cell Layers Facing the Outside Environment. Journal of Biological Chemistry, 2000, 275, 36189-36196.	3.4	65
7	Colocalization of heparin and histamine in the intracellular granules of test cells from the invertebrate Styela plicata (Chordata-Tunicata). Journal of Structural Biology, 2002, 137, 313-321.	2.8	59
8	Fractionation and identification of heparin and other acidic mucopolysaccharides by a new discontinuous electrophoretic method. Journal of Chromatography A, 1980, 196, 455-462.	3.7	57
9	Isolation and characterization of a heparin with high anticoagulant activity from Anomalocardia brasiliana. Biochimica Et Biophysica Acta - General Subjects, 1985, 843, 1-7.	2.4	52
10	A monoclonal antibody directed to terminal residue of Î ² -galactofuranose of a glycolipid antigen isolated from Paracoccidioides brasiliensis: cross-reactivity with Leishmania major and Trypanosoma cruzi. Glycobiology, 1997, 7, 463-468.	2.5	52
11	Phospholipase-D activity and inflammatory response induced by brown spider dermonecrotic toxin: Endothelial cell membrane phospholipids as targets for toxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 84-96.	2.4	52
12	Characterization of cerebrosides from the thermally dimorphic mycopathogen Histoplasma capsulatum: expression of 2-hydroxy fatty N-acyl (E)-Â3-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology, 2001, 11, 113-124.	2.5	51
13	Dimorphic expression of cerebrosides in the mycopathogen Sporothrix schenckii. Journal of Lipid Research, 2000, 41, 797-806.	4.2	51
14	Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi. Frontiers in Cellular and Infection Microbiology, 2014, 4, 138.	3.9	45
15	The Hemolymph of the Ascidian Styela plicata (Chordata-Tunicata) Contains Heparin inside Basophil-like Cells and a Unique Sulfated Galactoglucan in the Plasma. Journal of Biological Chemistry, 2007, 282, 1615-1626.	3.4	42
16	Analysis of glycosylinositol phosphorylceramides expressed by the opportunistic mycopathogen Aspergillus fumigatus. Journal of Lipid Research, 2007, 48, 1801-1824.	4.2	40
17	Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. Journal of Antimicrobial Chemotherapy, 2007, 59, 487-492.	3.0	39
18	Comparative analysis of glycosylinositol phosphorylceramides from fungi by electrospray tandem mass spectrometry with low-energy collision-induced dissociation of Li+ adduct ions. Rapid Communications in Mass Spectrometry, 2001, 15, 2240-2258.	1.5	38

Helio K Takahashi

#	Article	IF	CITATIONS
19	Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for development of new therapeutic strategies. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 362-369.	2.4	38
20	Role of β- d -Galactofuranose in Leishmania major Macrophage Invasion. Infection and Immunity, 2002, 70, 6592-6596.	2.2	35
21	Characterization of Leishmania (Viannia) braziliensis membrane microdomains, and their role in macrophage infectivity. Journal of Lipid Research, 2006, 47, 2171-2178.	4.2	35
22	Selective distribution of the heparin in mammals conspicuous presence of heparin in lymphoid tissues. Biochimica Et Biophysica Acta - General Subjects, 1980, 627, 40-48.	2.4	34
23	Heterogeneity of heparin: characterization of one hundred components with different anticoagulant activities by a combination of electrophoretic and affinity chromatography methods. International Journal of Biological Macromolecules, 1981, 3, 356-360.	7.5	33
24	Structural Characterization of a New Galactofuranose-Containing Glycolipid Antigen ofParacoccidioides brasiliensis. Biochemical and Biophysical Research Communications, 1996, 222, 639-645.	2.1	31
25	Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to fungal adhesion and Src-family kinase activation. Microbes and Infection, 2008, 10, 540-547.	1.9	30
26	Structure Elucidation of Sphingolipids from the Mycopathogen Sporothrix schenckii: Identification of Novel Glycosylinositol Phosphorylceramides with Core Manî±1→6Ins Linkage. Biochemical and Biophysical Research Communications, 2001, 280, 19-24.	2.1	29
27	Sphingolipids of the mycopathogenSporothrix schenckii: identification of a glycosylinositol phosphorylceramide with novel core GlcNH2α1→2Ins motif. FEBS Letters, 2001, 493, 50-56.	2.8	27
28	Expression of Antibodies Directed to Paracoccidioides brasiliensis Glycosphingolipids during the Course of Paracoccidioidomycosis Treatment. Vaccine Journal, 2007, 14, 150-156.	3.1	27
29	A monoclonal antibody (ST-1) directed to the native heparin chain. Analytical Biochemistry, 1992, 201, 1-8.	2.4	26
30	Modulation of the type I hypersensitivity late phase reaction to OVA by Propionibacterium acnes-soluble polysaccharide. Immunology Letters, 2008, 121, 157-166.	2.5	25
31	Membrane microdomain components of Histoplasma capsulatum yeast forms, and their role in alveolar macrophage infectivity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 458-466.	2.6	25
32	Current relevance of fungal and trypanosomatid glycolipids and sphingolipids: studies defining structures conspicuously absent in mammals. Anais Da Academia Brasileira De Ciencias, 2009, 81, 477-488.	0.8	24
33	Inhibition of mouse lymphocyte proliferative response by glycosphingolipids from Leishmania (L.) amazonensis. Experimental Parasitology, 1992, 75, 119-125.	1.2	22
34	Paracoccidioides brasiliensis induces secretion of IL-6 and IL-8 by lung epithelial cells. Modulation of host cytokine levels by fungal proteases. Microbes and Infection, 2012, 14, 1077-1085.	1.9	21
35	Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manp α1→3Manp α1→2IPC. BMC Microbiology, 2010, 10, 47.	3.3	19
36	Myriocin, a Serine Palmitoyltransferase Inhibitor, Blocks Cytokinesis in <i>Leishmania (Viannia) braziliensis</i> Promastigotes. Journal of Eukaryotic Microbiology, 2013, 60, 377-387.	1.7	14

Helio K Takahashi

#	Article	IF	CITATIONS
37	A method for rapid quantitation and preparation of antithrombin III-high-affinity heparin fractions. Analytical Biochemistry, 1981, 116, 456-461.	2.4	13
38	Selective appearance of heparin in mammalian tissues during development. Biochimica Et Biophysica Acta - General Subjects, 1982, 714, 292-297.	2.4	13
39	Role of Host Glycosphingolipids on Paracoccidioides brasiliensis Adhesion. Mycopathologia, 2011, 171, 325-332.	3.1	12
40	Immunocytochemical Localization of Heparin in Secretory Granules of Rat Peritoneal Mast Cells Using a Monoclonal Anti-heparin Antibody (ST-1)1. Journal of Histochemistry and Cytochemistry, 1997, 45, 231-235.	2.5	11
41	Reactivity of MEST-1 (Antigalactofuranose) withTrypanosoma cruzi Glycosylinositol Phosphorylceramides (GIPCs): Immunolocalization of GIPCs in Acidic Vesicles of Epimastigotes. Vaccine Journal, 2001, 8, 1031-1035.	2.6	10
42	Effect of Glycosphingolipids Purified from Leishmania (Leishmania) amazonensis Amastigotes on Human Peripheral Lymphocytes. Vaccine Journal, 2003, 10, 469-472.	3.1	8
43	Inhibition of macrophage invasion by monoclonal antibodies specific to Leishmania (Viannia) braziliensis promastigotes and characterisation of their antigens. International Journal for Parasitology, 2001, 31, 1451-1458.	3.1	6
44	Leishmania (Viannia) braziliensis Inositol Phosphorylceramide: Distinctive Sphingoid Base Composition. Frontiers in Microbiology, 2017, 8, 1453.	3.5	5
45	Glycolipid Sensing and Innate Immunity in Paracoccidioidomycosis. Mycopathologia, 2014, 178, 153-162.	3.1	4
46	Corrigendum to: Disruption of the glucosylceramide biosynthetic pathway inAspergillus nidulansandAspergillus fumigatusby inhibitors of UDP-Glc: ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth (FEBS 26342). FEBS Letters, 2002, 526, 151-151.	2.8	2
47	A snapshot of extracellular DNA influence on Aspergillus biofilm. Frontiers in Microbiology, 2014, 5, 260.	3.5	1
48	Effect of inhibitor of sphingolipid synthesis on Leishmania (Viannia) braziliensis cytokinesis. FASEB Journal, 2013, 27, 822.10.	0.5	0