Sofia Telitel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11081460/publications.pdf

Version: 2024-02-01

304743 477307 1,661 28 22 29 citations h-index g-index papers 29 29 29 1006 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Promoting carboxylate salts in the ESI source to simplify positive mode MS/MS sequencing of acid-terminated encoded polyurethanes. International Journal of Mass Spectrometry, 2020, 448, 116271.	1.5	5
2	Reactivity of Bâ€Xanthyl Nâ€Heterocyclic Carbeneâ€Boranes. Helvetica Chimica Acta, 2019, 102, e1900198.	1.6	3
3	Sequence-coded ATRP macroinitiators. Polymer Chemistry, 2017, 8, 4988-4991.	3.9	9
4	Negative mode MS/MS to read digital information encoded in sequence-defined oligo(urethane)s: A mechanistic study. International Journal of Mass Spectrometry, 2017, 421, 271-278.	1.5	17
5	Model-Based Design To Push the Boundaries of Sequence Control. Macromolecules, 2016, 49, 9336-9344.	4.8	51
6	Iron complexes as potential photocatalysts for controlled radical photopolymerizations: A tool for modifications and patterning of surfaces. Journal of Polymer Science Part A, 2016, 54, 702-713.	2.3	71
7	Photoredox process induced polymerization reactions: Iridium complexes for panchromatic photoinitiating systems. Comptes Rendus Chimie, 2016, 19, 71-78.	0.5	46
8	Influence of Electronic Effects on the Reactivity of Triazolylideneâ€Boryl Radicals: Consequences for the use of Nâ€Heterocyclic Carbene Boranes in Organic and Polymer Synthesis. Chemistry - A European Journal, 2015, 21, 13772-13777.	3.3	12
9	A dinuclear gold(<scp>i</scp>) complex as a novel photoredox catalyst for light-induced atom transfer radical polymerization. Polymer Chemistry, 2015, 6, 4605-4611.	3.9	85
10	UV-Induced Micropatterning of Complex Functional Surfaces by Photopolymerization Controlled by Alkoxyamines. Langmuir, 2015, 31, 10026-10036.	3.5	27
11	Photoredox catalysis using a new iridium complex as an efficient toolbox for radical, cationic and controlled polymerizations under soft blue to green lights. Polymer Chemistry, 2015, 6, 613-624.	3.9	87
12	Novel polymer synthesis methodologies using combinations of thermally- and photochemically-induced nitroxide mediated polymerization. Polymer Chemistry, 2015, 6, 754-763.	3.9	44
13	Thiophene Derivatives with Donor–π–Acceptor Structures for Enhanced Lightâ€Absorption Properties and Efficient Cationic Polymerization upon Green‣ight Irradiation. Macromolecular Chemistry and Physics, 2014, 215, 1514-1524.	2.2	11
14	Nitroxide Mediated Photopolymerization: A Versatile Tool for the Fabrication of Complex Multilayer Polyfunctional Copolymer Nanostructures. Advanced Materials Interfaces, 2014, 1, 1400067.	3.7	25
15	The 1,3-bis(dicyanomethylidene)indane skeleton as a (photo) initiator in thermal ring opening polymerization at RT and radical or cationic photopolymerization. RSC Advances, 2014, 4, 15930.	3.6	32
16	Metal and metal-free photocatalysts: mechanistic approach and application as photoinitiators of photopolymerization. Beilstein Journal of Organic Chemistry, 2014, 10, 863-876.	2.2	87
17	Photoinitiating systems of polymerization and in situ incorporation of metal nanoparticles into polymer matrices upon exposure to visible light: push–pull malonate and malononitrile based dyes. Polymer Chemistry, 2013, 4, 5679.	3.9	55
18	Zinc-based metal complexes as new photocatalysts in polymerization initiating systems. European Polymer Journal, 2013, 49, 1040-1049.	5.4	78

#	Article	IF	CITATION
19	Soft Photopolymerizations Initiated by Dye-Sensitized Formation of NHC-Boryl Radicals under Visible Light. Macromolecules, 2013, 46, 43-48.	4.8	72
20	BODIPY derivatives and boranil as new photoinitiating systems of cationic polymerization exhibiting a tunable absorption in the 400–600Ânm spectral range. Polymer, 2013, 54, 2071-2076.	3.8	48
21	Formation of N-Heterocyclic Carbene–Boryl Radicals through Electrochemical and Photochemical Cleavage of the B–S bond in N-Heterocyclic Carbene–Boryl Sulfides. Journal of the American Chemical Society, 2013, 135, 16938-16947.	13.7	57
22	New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators. Beilstein Journal of Organic Chemistry, 2013, 9, 877-890.	2.2	59
23	Iridium complexes incorporating coumarin moiety as catalyst photoinitiators: Towards household green LED bulb and halogen lamp irradiation. Polymer, 2012, 53, 2803-2808.	3.8	94
24	Photopolymerization of Cationic Monomers and Acrylate/Divinylether Blends under Visible Light Using Pyrromethene Dyes. Macromolecules, 2012, 45, 6864-6868.	4.8	75
25	<i>N</i> -Vinylcarbazole: An Additive for Free Radical Promoted Cationic Polymerization upon Visible Light. ACS Macro Letters, 2012, 1, 802-806.	4.8	129
26	Polyaromatic Structures as Organo-Photoinitiator Catalysts for Efficient Visible Light Induced Dual Radical/Cationic Photopolymerization and Interpenetrated Polymer Networks Synthesis. Macromolecules, 2012, 45, 4454-4460.	4.8	144
27	Photopolymerization of <i>N</i> -Vinylcarbazole Using Visible-Light Harvesting Iridium Complexes as Photoinitiators. Macromolecules, 2012, 45, 4134-4141.	4.8	133
28	Nâ€Heterocyclic Carbene Boranes Accelerate Typeâ€I Radical Photopolymerizations and Overcome Oxygen Inhibition. Angewandte Chemie - International Edition, 2012, 51, 5958-5961.	13.8	85