List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1108071/publications.pdf Version: 2024-02-01

ΔΝΟΕΙΛ ΈΛΟΟ

#	Article	lF	CITATIONS
1	Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic Biochemistry, 2005, 99, 110-119.	1.5	286
2	Reactivity Studies of the Fe(III) and Fe(II)NO Forms of Human Neuroglobin Reveal a Potential Role against Oxidative Stress. Journal of Biological Chemistry, 2004, 279, 22841-22847.	1.6	233
3	Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science, 2016, 354, 336-339.	6.0	206
4	Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14450-14455.	3.3	202
5	Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2068-H2074.	1.5	182
6	Epistasis Among Adaptive Mutations in Deer Mouse Hemoglobin. Science, 2013, 340, 1324-1327.	6.0	174
7	Allosteric Regulation and Temperature Dependence of Oxygen Binding in Human Neuroglobin and Cytoglobin. Journal of Biological Chemistry, 2004, 279, 44417-44426.	1.6	160
8	Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20669-20674.	3.3	149
9	Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. Journal of Inorganic Biochemistry, 2008, 102, 1777-1782.	1.5	140
10	The reaction of neuroglobin with potential redox protein partners cytochrome b 5 and cytochrome c. FEBS Letters, 2006, 580, 4884-4888.	1.3	125
11	Genetic differences in hemoglobin function between highland and lowland deer mice. Journal of Experimental Biology, 2010, 213, 2565-2574.	0.8	124
12	Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respiratory Physiology and Neurobiology, 2004, 144, 141-159.	0.7	117
13	Functional Properties of Neuroglobin and Cytoglobin. Insights into the Ancestral Physiological Roles of Globins. IUBMB Life, 2004, 56, 689-696.	1.5	107
14	Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level. PLoS Genetics, 2015, 11, e1005681.	1.5	103
15	Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3072-H3078.	1.5	100
16	Epistasis Constrains Mutational Pathways of Hemoglobin Adaptation in High-Altitude Pikas. Molecular Biology and Evolution, 2015, 32, 287-298.	3.5	95
17	Intraspecific Polymorphism, Interspecific Divergence, and the Origins of Function-Altering Mutations in Deer Mouse Hemoglobin. Molecular Biology and Evolution, 2015, 32, 978-997.	3.5	88
18	Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13958-13963.	3.3	86

#	Article	IF	CITATIONS
19	Reactions of peroxynitrite with globin proteins and their possible physiological role. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2005, 142, 124-129.	0.8	75
20	Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1865-1870.	3.3	74
21	Modulation of red cell glycolysis: interactions between vertebrate hemoglobins and cytoplasmic domains of band 3 red cell membrane proteins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R454-R464.	0.9	67
22	Hemoglobin Structure and Function. Fish Physiology, 1998, 17, 1-40.	0.2	60
23	A role for neuroglobin: Resetting the trigger level for apoptosis in neuronal and retinal cells. IUBMB Life, 2008, 60, 398-401.	1.5	60
24	Integrating Evolutionary and Functional Tests of Adaptive Hypotheses: A Case Study of Altitudinal Differentiation in Hemoglobin Function in an Andean Sparrow, Zonotrichia capensis. Molecular Biology and Evolution, 2014, 31, 2948-2962.	3.5	59
25	Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose. PLoS Genetics, 2018, 14, e1007331.	1.5	58
26	Hypoxia Tolerance, Nitric Oxide, and Nitrite: Lessons From Extreme Animals. Physiology, 2015, 30, 116-126.	1.6	57
27	A Membrane-Bound Vertebrate Globin. PLoS ONE, 2011, 6, e25292.	1.1	56
28	Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions. Journal of Inorganic Biochemistry, 2018, 182, 133-140.	1.5	54
29	The Cathodic Hemoglobin of Anguilla anguilla. Journal of Biological Chemistry, 1995, 270, 18897-18902.	1.6	53
30	Keeping the heart in balance: the functional interactions of myoglobin with nitrogen oxides. Journal of Experimental Biology, 2010, 213, 2726-2733.	0.8	52
31	Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia-reperfusion injury. Scientific Reports, 2019, 9, 2850.	1.6	52
32	Effects of short-term hypoxia on neuroglobin levels and localization in mouse brain tissues. Neuropathology and Applied Neurobiology, 2005, 31, 610-617.	1.8	50
33	Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1052-R1060.	0.9	49
34	Stability-Mediated Epistasis Restricts Accessible Mutational Pathways in the Functional Evolution of Avian Hemoglobin. Molecular Biology and Evolution, 2017, 34, 1240-1251.	3.5	49
35	Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorhynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance. Journal of Experimental Biology, 2010, 213, 2755-2762.	0.8	48
36	Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R693-R701.	0.9	48

#	Article	IF	CITATIONS
37	The Unique Hemoglobin System of Pleuragramma antarcticum, an Antarctic Migratory Teleost. Journal of Biological Chemistry, 1996, 271, 23780-23785.	1.6	46
38	The Anodic Hemoglobin of Anguilla anguilla. Journal of Biological Chemistry, 1997, 272, 15628-15635.	1.6	46
39	Isohemoglobin Differentiation in the Bimodal-breathing Amazon Catfish Hoplosternum littorale. Journal of Biological Chemistry, 2000, 275, 17297-17305.	1.6	46
40	Expression and Purification of Recombinant Hemoglobin in Escherichia coli. PLoS ONE, 2011, 6, e20176.	1.1	46
41	Temperature-Dependent Enthalpy of Oxygenation in Antarctic Fish Hemoglobins. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 319-326.	0.7	45
42	Hemoglobin and subunit multiplicity in the rainbow trout (Oncorhynchus mykiss) hemoglobin system. Fish Physiology and Biochemistry, 2001, 24, 335-342.	0.9	45
43	The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. FEBS Journal, 1992, 210, 963-970.	0.2	43
44	The reactions of neuroglobin with CO: Evidence for two forms of the ferrous protein. Journal of Inorganic Biochemistry, 2006, 100, 1339-1343.	1.5	43
45	Students' motivation toward laboratory work in physiology teaching. American Journal of Physiology - Advances in Physiology Education, 2016, 40, 313-318.	0.8	41
46	Hemoglobin function and allosteric regulation in semi-fossorial rodents (family Sciuridae) with different altitudinal ranges. Journal of Experimental Biology, 2013, 216, 4264-4271.	0.8	40
47	Genetically based low oxygen affinities of felid hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard. Journal of Experimental Biology, 2015, 218, 2402-2409.	0.8	40
48	The case of the missing NO- hemoglobin: Spectral changes suggestive of heme redox reactions reflect changes in NO- heme geometry. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12087-12092.	3.3	39
49	Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 162, 1-6.	0.8	39
50	Expression patterns and adaptive functional diversity of vertebrate myoglobins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1832-1839.	1.1	39
51	Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I S-nitrosation. Journal of Experimental Biology, 2018, 221, .	0.8	39
52	The Nerve Hemoglobin of the Bivalve Mollusc Spisula solidissima. Journal of Biological Chemistry, 2006, 281, 5364-5372.	1.6	36
53	Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, <i>Trachemys scripta</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R961-R967.	0.9	36
54	The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen. Journal of Biological Chemistry, 2016, 291, 23989-23998.	1.6	36

#	Article	IF	CITATIONS
55	Phenotypic plasticity in blood-oxygen transport in highland and lowland deer mice. Journal of Experimental Biology, 2013, 216, 1167-73.	0.8	33
56	Functional properties of myoglobins from five whale species with different diving capacities. Journal of Experimental Biology, 2012, 215, 3403-10.	0.8	33
57	Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R300-R312.	0.9	33
58	Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radical Biology and Medicine, 2014, 73, 349-357.	1.3	32
59	A polymerising Root-effect fish hemoglobin with high subunit heterogeneity. Correlation with primary structure. FEBS Journal, 1993, 218, 829-835.	0.2	31
60	Characterization of a Globin-coupled Oxygen Sensor with a Gene-regulating Function. Journal of Biological Chemistry, 2007, 282, 37325-37340.	1.6	30
61	ATP-induced temperature independence of hemoglobin–O2 affinity in heterothermic billfish. Journal of Experimental Biology, 2010, 213, 1579-1585.	0.8	30
62	Oxygenation properties and isoform diversity of snake hemoglobins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1178-R1191.	0.9	29
63	Allosteric mechanisms underlying the adaptive increase in hemoglobin-oxygen affinity of the bar-headed goose. Journal of Experimental Biology, 2018, 221, .	0.8	29
64	The hemoglobin system of the hagfish Myxine glutinosa: aggregation state and functional properties. BBA - Proteins and Proteomics, 1995, 1249, 109-115.	2.1	27
65	The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties. PLoS ONE, 2017, 12, e0186181.	1.1	27
66	Metabolic adaptations to anoxia and reoxygenation: New lessons from freshwater turtles and crucian carp. Current Opinion in Endocrine and Metabolic Research, 2020, 11, 55-64.	0.6	26
67	The primary structure and oxygen-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt. Polar Biology, 1992, 12, 135-140.	0.5	25
68	Circulating nitric oxide metabolites and cardiovascular changes in the turtle <i>Trachemys scripta</i> during normoxia, anoxia and reoxygenation. Journal of Experimental Biology, 2012, 215, 2560-2566.	0.8	25
69	Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 161, 265-270.	0.8	25
70	Allosteric modulation by S-nitrosation in the low-O2 affinity myoglobin from rainbow trout. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R101-R108.	0.9	24
71	Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 195, 10-14.	0.8	24
72	Evolutionary and Functional Properties of a Two-Locus β-Globin Polymorphism in Indian House Mice. Genetics, 2010, 184, 1121-1131.	1.2	23

#	Article	IF	CITATIONS
73	Oxygen binding properties of non-mammalian nerve globins. FEBS Journal, 2006, 273, 1323-1329.	2.2	22
74	High temperature impairs mitochondrial function in rainbow trout cardiac mitochondria. Journal of Experimental Biology, 2021, 224, .	0.8	22
75	Globin-like proteins in Caenorhabditis elegans: in vivo localization, ligand binding and structural properties. BMC Biochemistry, 2010, 11, 17.	4.4	21
76	High blood oxygen affinity in the air-breathing swamp eel Monopterus albus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 178, 102-108.	0.8	21
77	Turtles maintain mitochondrial integrity but reduce mitochondrial respiratory capacity in the heart after cold-acclimation and anoxia. Journal of Experimental Biology, 2019, 222, .	0.8	21
78	Hagfish Hemoglobins. Journal of Biological Chemistry, 2001, 276, 27415-27423.	1.6	20
79	Thermodynamics of oxygenation-linked proton and lactate binding govern the temperature sensitivity of O2 binding in crustacean(<i>Carcinus maenas</i>) hemocyanin. Journal of Experimental Biology, 2008, 211, 1057-1062.	0.8	20
80	Bicarbonate binding to hemoglobin links oxygen and carbon dioxide transport in hagfish. Respiration Physiology, 1999, 115, 309-315.	2.8	19
81	Respiratory responses to short term hypoxia in the snapping turtle, Chelydra serpentina. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2000, 126, 223-231.	0.8	18
82	Nitric oxide increases myocardial efficiency in the hypoxia-tolerant turtle <i>Trachemys scripta</i> . Journal of Experimental Biology, 2009, 212, 954-960.	0.8	18
83	Unusual stability of human neuroglobin at low pH – molecular mechanisms and biological significance. FEBS Journal, 2009, 276, 7027-7039.	2.2	17
84	A Novel Possible Role for Met Hemoglobin as Carrier of Hydrogen Sulfide in the Blood. Antioxidants and Redox Signaling, 2020, 32, 258-265.	2.5	17
85	Stable mitochondrial CICIII2 supercomplex interactions in reptiles compared to homeothermic vertebrates. Journal of Experimental Biology, 2020, 223, .	0.8	17
86	The haemoglobin system of the mudfish, Labeo capensis: adaptations to temperature and hypoxia. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 735-742.	0.7	16
87	Enthalpic partitioning of the reduced temperature sensitivity of O2 binding in bovine hemoglobin. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 176, 20-25.	0.8	16
88	Functional roles of globin proteins in hypoxia-tolerant ectothermic vertebrates. Journal of Applied Physiology, 2017, 123, 926-934.	1.2	16
89	O2 binding and CO2 sensitivity in hemoglobins of subterranean African mole rats. Journal of Experimental Biology, 2017, 220, 3939-3948.	0.8	16
90	Hypoxia enhances blood O2 affinity and depresses skeletal muscle O2 consumption in zebrafish (Danio) Tj ETQq	0 0 0 rgBT 0.7	/Overlock 10

18-25.

#	Article	IF	CITATIONS
91	Allosteric Effect of Water in Fish and Human Hemoglobins. Journal of Biological Chemistry, 2003, 278, 42769-42773.	1.6	14
92	Oxygen binding to partially nitrosylated hemoglobin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1894-1900.	1.1	14
93	Haematological studies on Aethotaxis mitopteryx DeWitt, a high-Antarctic fish with a single haemoglobin. Polar Biology, 1992, 12, 141-145.	0.5	13
94	Oxygen binding by single red blood cells from the red-eared turtle Trachemys scripta. Journal of Applied Physiology, 2001, 90, 1679-1684.	1.2	13
95	Water regulates oxygen binding in hagfish (Myxine glutinosa)hemoglobin. Journal of Experimental Biology, 2003, 206, 1389-1395.	0.8	13
96	Decrease in the red cell cofactor 2,3-diphosphoglycerate increases hemoglobin oxygen affinity in the hibernating brown bear <i>Ursus arctos</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R43-R49.	0.9	13
97	Insights into the anomalous heme pocket of rainbow trout myoglobin. Journal of Inorganic Biochemistry, 2012, 109, 1-8.	1.5	12
98	Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite. Journal of Inorganic Biochemistry, 2015, 149, 6-11.	1.5	12
99	A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 205, 35-40.	0.8	12
100	The Zebrafish Cytochrome <i>b</i> ₅ /Cytochrome <i>b</i> ₅ Reductase/NADH System Efficiently Reduces Cytoglobins 1 and 2: Conserved Activity of Cytochrome <i>b</i> ₅ /Cytochrome <i>b</i> ₅ Reductases during Vertebrate Evolution. Biochemistry, 2019, 58, 3212-3223.	1.2	12
101	Structure and function of crocodilian hemoglobins and allosteric regulation by chloride, ATP, and CO ₂ . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R657-R667.	0.9	12
102	Effects of an 8-weeks erythropoietin treatment on mitochondrial and whole body fat oxidation capacity during exercise in healthy males. Journal of Sports Sciences, 2015, 33, 570-578.	1.0	11
103	The roles of tissue nitrate reductase activity and myoglobin in securing nitric oxide availability in deeply hypoxic crucian carp. Journal of Experimental Biology, 2016, 219, 3875-3883.	0.8	11
104	Globin E is a myoglobin-related, respiratory protein highly expressed in lungfish oocytes. Scientific Reports, 2019, 9, 280.	1.6	11
105	Suppression of mitochondrial respiration by hydrogen sulfide in hibernating 13-lined ground squirrels. Free Radical Biology and Medicine, 2021, 169, 181-186.	1.3	11
106	New insights into survival strategies to oxygen deprivation in anoxiaâ€ŧolerant vertebrates. Acta Physiologica, 2022, 235, e13841.	1.8	11
107	Enhancing effects of acetazolamide on neuronal activity correlate with enhanced visual processing ability in humans. Neuropharmacology, 2011, 61, 900-908.	2.0	10
108	Oxygen Binding and Aggregation of Hemoglobin from the Common European Frog, Rana temporaria. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 117, 225-231.	0.7	9

#	Article	IF	CITATIONS
109	Critical Redox and Allosteric Aspects of Nitric Oxide Interactions with Hemoglobin. Antioxidants and Redox Signaling, 2004, 6, 979-991.	2.5	9
110	Molecular and functional characterization of hemocyanin of the giant African millipede, <i>Archispirostreptus gigas</i> . Journal of Experimental Biology, 2013, 216, 1616-23.	0.8	9
111	Hemoglobin polymerization via disulfide bond formation in the hypoxia-tolerant turtle <i>Trachemys scripta</i> : implications for antioxidant defense and O ₂ transport. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R84-R93.	0.9	9
112	Functional diversification of sea lamprey globins in evolution and development. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 283-291.	1.1	9
113	Deer mouse hemoglobin exhibits a lowered oxygen affinity owing to mobility of the E helix. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 393-398.	0.7	8
114	Oxygen-Linked S-Nitrosation in Fish Myoglobins: A Cysteine-Specific Tertiary Allosteric Effect. PLoS ONE, 2014, 9, e97012.	1.1	8
115	Intrinsic Mechanisms Underlying Hypoxia-Tolerant Mitochondrial Phenotype During Hypoxia-Reoxygenation Stress in a Marine Facultative Anaerobe, the Blue Mussel Mytilus edulis. Frontiers in Marine Science, 2021, 8, .	1.2	8
116	Effects of water activity on oxygen-binding in high-molecular weight, extracellular invertebrate hemoglobin and hemocyanin. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 136, 83-90.	0.7	7
117	A Globin Domain in a Neuronal Transmembrane Receptor of Caenorhabditis elegans and Ascaris suum. Journal of Biological Chemistry, 2015, 290, 10336-10352.	1.6	7
118	Regulation of blood oxygen transport in hibernating mammals. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 847-856.	0.7	7
119	Emergence of a Chimeric Globin Pseudogene and Increased Hemoglobin Oxygen Affinity Underlie the Evolution of Aquatic Specializations in Sirenia. Molecular Biology and Evolution, 2019, 36, 1134-1147.	3.5	7
120	Oxygenation properties of hemoglobin and the evolutionary origins of isoform multiplicity in an amphibious air-breathing fish, the blue-spotted mudskipper (<i>Boleophthalmus pectinirostris</i>). Journal of Experimental Biology, 2020, 223, .	0.8	7
121	Tissue-dependent variations of hydrogen sulfide homeostasis in anoxic freshwater turtles. Journal of Experimental Biology, 2019, 222, .	0.8	6
122	Genetic and functional diversity of the multiple lungfish myoglobins. FEBS Journal, 2020, 287, 1598-1611.	2.2	6
123	Exploring pathways of NO and H2S signaling in metabolic depression: The case of anoxic turtles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 253, 110857.	0.8	6
124	Carbon dioxide and bicarbonate accumulation in caiman erythrocytes during diving. Journal of Experimental Biology, 2021, 224, .	0.8	6
125	Effect of NH2-terminal acetylation on the oxygenation properties of vertebrate haemoglobin. Biochemical Journal, 2020, 477, 3839-3850.	1.7	6
126	Genetic variation in haemoglobin is associated with evolved changes in breathing in high-altitude deer mice. Journal of Experimental Biology, 2022, 225, .	0.8	6

#	Article	IF	CITATIONS
127	Hagfish Haemoglobins. , 1998, , 321-333.		5
128	Myoglobin-dependent O2 consumption of the hypoxic trout heart. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 165, 40-45.	0.8	4
129	New insights into the allosteric effects of CO2 and bicarbonate on crocodilian hemoglobin. Journal of Experimental Biology, 2021, 224, .	0.8	4
130	The role of blood nitrite in the control of hypoxic vasodilation. Advances in Experimental Biology, 2007, , 199-212.	0.1	3
131	Myoglobin oxygenation and autoxidation in three reptilian species. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 187, 8-12.	0.8	3
132	Sulfide metabolism and the mechanism of torpor. Journal of Experimental Biology, 2021, 224, .	0.8	3
133	Kinetic properties and heme pocket structure of two domains of the polymeric hemoglobin of Artemia in comparison with the native molecule. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1307-1316.	1.1	2
134	Evolution of hemoglobin function in tropical airâ€breathing catfishes. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2021, 335, 814-819.	0.9	2
135	Changes in hemoglobin function and isoform expression during embryonic development in the American alligator, Alligator mississippiensis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R869-R878.	0.9	2
136	Critical Redox and Allosteric Aspects of Nitric Oxide Interactions with Hemoglobin. Antioxidants and Redox Signaling, 2004, 6, 979-991.	2.5	1
137	Haematological studies on Aethotaxis mitopteryx DeWitt, a high-Antarctic fish with a single haemoglobin. , 1992, , 141-145.		1
138	The primary structure and oxygen-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt. , 1992, , 135-140.		1
139	Ontogeny of hemoglobin‑oxygen binding and multiplicity in the obligate air-breathing fish Arapaima gigas. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2022, 268, 111190.	0.8	1
140	Unraveling the origin of the nitrite-mediated hypoxic vasodilation. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2007, 146, S159.	0.8	0