Gerhard Knothe

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1107931/gerhard-knothe-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,289 90 35 90 h-index g-index citations papers 11,108 7.27 90 5.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
90	Improvement of Diesel Lubricity by Chemically Modified Tung-Oil-Based Fatty Acid Esters as Additives. <i>Energy & Diesels</i> , 2019 , 33, 5110-5115	4.1	7
89	Composition of Some Apiaceae Seed Oils Includes Phytochemicals, and Mass Spectrometry of Fatty Acid 2-Methoxyethyl Esters. <i>European Journal of Lipid Science and Technology</i> , 2019 , 121, 1800386	3	7
88	Fatty acids, triterpenes and cycloalkanes in ficus seed oils. <i>Plant Physiology and Biochemistry</i> , 2019 , 135, 127-131	5.4	2
87	Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties. <i>Biofuels</i> , 2019 , 10, 239-243	2	1
86	The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition. <i>Fuel Processing Technology</i> , 2018 , 177, 75-80	7.2	35
85	Methyl esters (biodiesel) from Pachyrhizus erosus seed oil. <i>Biofuels</i> , 2018 , 9, 449-454	2	8
84	Fatty Acid Profiles of Garuga floribunda, Ipomoea pes-caprae, Melanolepis multiglandulosa and Premna odorata Seed Oils. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2017 , 94, 333-338	1.8	
83	Direct transesterification of spent coffee grounds for biodiesel production. <i>Fuel</i> , 2017 , 199, 157-161	7.1	85
82	Glycerolysis with crude glycerin as an alternative pretreatment for biodiesel production from grease trap waste: Parametric study and energy analysis. <i>Journal of Cleaner Production</i> , 2017 , 162, 504-	-5 ¹ 9·3	28
81	Analysis of Biodiesel 2017 , 1-15		1
80	Decarboxylation of Fatty Acids with Triruthenium Dodecacarbonyl: Influence of the Compound Structure and Analysis of the Product Mixtures. <i>ACS Omega</i> , 2017 , 2, 6473-6480	3.9	13
79	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. JAOCS, Journal of the American Oil Chemistsr Society, 2017, 94, 537-549	1.8	1
78	Biodiesel fuels. <i>Progress in Energy and Combustion Science</i> , 2017 , 58, 36-59	33.6	376
77	Biodiesel 2016 , 391-405		
76	Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	2
75	Fatty Acid Profiles of Some Fabaceae Seed Oils. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2016 , 93, 1007-1011	1.8	6
74	Synthesis of Epoxidized Cardanol and Its Antioxidative Properties for Vegetable Oils and Biodiesel. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 901-906	8.3	48

73	Biodiesel and Its Properties 2016 , 15-42		9
72	Decolorization improves the fuel properties of algal biodiesel from Isochrysis sp Fuel, 2016 , 179, 229-23	3/4 1	8
71	Analysis and Properties of the Decarboxylation Products of Oleic Acid by Catalytic Triruthenium Dodecacarbonyl. <i>Energy & Dodecacarbonyl. Energy &</i>	4.1	11
70	Fatty acid profile of seashore mallow (Kosteletzkya pentacarpos) seed oil and properties of the methyl esters. <i>European Journal of Lipid Science and Technology</i> , 2015 , 117, 1287-1294	3	10
69	Methyl Esters (Biodiesel) from and Fatty Acid Profile of Gliricidia sepium Seed Oil. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2015 , 92, 769-775	1.8	15
68	Biodiesel exhaust: the need for a systematic approach to health effects research. <i>Respirology</i> , 2015 , 20, 1034-45	3.6	22
67	Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid. <i>European Journal of Lipid Science and Technology</i> , 2015 , 117, 567-574	3	4
66	Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel. <i>Industrial Crops and Products</i> , 2014 , 54, 226-232	5.9	35
65	Synthesis and Analysis of an Alkenone-Free Biodiesel from Isochrysis sp <i>Energy & Description</i> 28, 2677-2683	4.1	13
64	Kapok oil methyl esters. <i>Biomass and Bioenergy</i> , 2014 , 66, 419-425	5.3	21
63	A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. <i>Fuel</i> , 2014 , 119, 6-13	7.1	99
62	Biobased Lubricants and Functional Products from Cuphea Oil 2014 , 443-482		
61	Cuphea Oil as a Potential Biodiesel Feedstock to Improve Fuel Properties. <i>Journal of Energy Engineering - ASCE</i> , 2014 , 140,	1.7	7
60	A Comprehensive Evaluation of the Density of Neat Fatty Acids and Esters. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2014 , 91, 1711-1722	1.8	15
59	Biodiesel Lubricity and Other Properties 2014 , 483-500		
58	Fatty Acid Profile of Kenaf Seed Oil. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2013 , 90, 835-8	848	14
57	Avocado and olive oil methyl esters. <i>Biomass and Bioenergy</i> , 2013 , 58, 143-148	5.3	30
56	Kenaf oil methyl esters. <i>Industrial Crops and Products</i> , 2013 , 49, 568-572	5.9	20

55	Production and Properties of Biodiesel from Algal Oils 2013 , 207-221		24
54	Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. <i>Industrial Crops and Products</i> , 2013 , 45, 355-359	5.9	75
53	Exhaust emissions and mutagenic effects of diesel fuel, biodiesel and biodiesel blends. <i>Fuel</i> , 2013 , 103, 414-420	7.1	24
52	Response to the Letter to the Editor regarding D etermination of the fatty acid profile by 1H NMR spectroscopy [European Journal of Lipid Science and Technology, 2013 , 115, 1201-1202	3	
51	Fuel properties of methyl esters of borage and black currant oils containing methyl Linolenate. <i>European Journal of Lipid Science and Technology</i> , 2013 , 115, 901-908	3	7
50	Fuel Properties of Highly Polyunsaturated Fatty Acid Methyl Esters. Prediction of Fuel Properties of Algal Biodiesel. <i>Energy & Double Supply</i> 2012, 26, 5265-5273	4.1	109
49	Beyond Fatty Acid Methyl Esters: Expanding the Renewable Carbon Profile with Alkenones from Isochrysis sp <i>Energy & Documents (March 2012)</i> , 26, 2434-2441	4.1	17
48	Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters. <i>Fuel</i> , 2012 , 96, 535-540	7.1	39
47	A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?. <i>Green Chemistry</i> , 2011 , 13, 3048	10	127
46	Fatty Acid Alkyl Esters as Solvents: Evaluation of the Kauri-Butanol Value. Comparison to Hydrocarbons, Dimethyl Diesters, and Other Oxygenates. <i>Industrial & Diesters and Chemistry Research</i> , 2011 , 50, 4177-4182	3.9	20
45	The Potential of Biodiesel with Improved Properties to an Alternative Energy Mix. <i>Green Energy and Technology</i> , 2011 , 75-82	0.6	2
44	Kinematic viscosity of fatty acid methyl esters: Prediction, calculated viscosity contribution of esters with unavailable data, and carbonBxygen equivalents. <i>Fuel</i> , 2011 , 90, 3217-3224	7.1	62
43	Biodiesel from Milo (Thespesia populnea L.) seed oil. <i>Biomass and Bioenergy</i> , 2011 , 35, 4034-4039	5.3	69
42	Will biodiesel derived from algal oils live up to its promise? A fuel property assessment. <i>Lipid Technology</i> , 2011 , 23, 247-249		12
41	Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids. <i>European Journal of Lipid Science and Technology</i> , 2011 , 113, 980-984	3	16
40	Biofuels: The Role of Biodiesel and Improving Its Performance. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1326, 1		
39	Other Uses of Biodiesel 2010 , 401-403		20
38	Liquid-Phase Penetration under Unsteady In-Cylinder Conditions: Soy- and Cuphea-Derived Biodiesel Fuels Versus Conventional Diesel. <i>Energy & Energy & Energ</i>	4.1	39

(2007-2010)

37	Comment on B iodiesel Production from Freshwater Algaell Energy & amp; Fuels, 2010 , 24, 3299-3300	4.1	1
36	Biodiesel Derived from a Model Oil Enriched in Palmitoleic Acid, Macadamia Nut Oil. <i>Energy & Enels</i> , 2010 , 24, 2098-2103	4.1	52
35	Biodiesel from meadowfoam (Limnanthes alba L.) seed oil: oxidative stability and unusual fatty acid composition. <i>Energy and Environmental Science</i> , 2010 , 3, 318	35.4	35
34	Biodiesel: Current Trends and Properties. <i>Topics in Catalysis</i> , 2010 , 53, 714-720	2.3	72
33	Biodiesel and renewable diesel: A comparison. <i>Progress in Energy and Combustion Science</i> , 2010 , 36, 364	-37.36	616
32	A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2009 , 86, 843-85	5 <mark>1</mark> .8	265
31	Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. <i>Fuel</i> , 2009 , 88, 1064-1069	7.1	81
30	Evaluation of biodiesel obtained from cottonseed oil. <i>Fuel Processing Technology</i> , 2009 , 90, 1157-1163	7.2	200
29	A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel. <i>Bioresource Technology</i> , 2009 , 100, 5796-801	11	123
28	Cuphea Oil as Source of Biodiesel with Improved Fuel Properties Caused by High Content of Methyl Decanoate. <i>Energy & Decanoate</i> , Fuels, 2009 , 23, 1743-1747	4.1	93
27	Production and Evaluation of Biodiesel from Field Pennycress (Thlaspi arvense L.) Oil <i>Energy & Energy Energy Energy Energy (See L.)</i> 23, 4149-4155	4.1	156
26	Improving biodiesel fuel properties by modifying fatty ester composition. <i>Energy and Environmental Science</i> , 2009 , 2, 759	35.4	465
25	Designer Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. <i>Energy & amp; Fuels</i> , 2008 , 22, 1358-1364	4.1	966
24	Evaluation of ball and disc wear scar data in the HFRR lubricity test. Lubrication Science, 2008, 20, 35-45	1.3	16
23	1,2-Isopropylidene Glycerol Carbonate: Preparation, Characterization, and Hydrolysis. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2008 , 85, 365-372	1.8	5
22	Moringa oleifera oil: a possible source of biodiesel. <i>Bioresource Technology</i> , 2008 , 99, 8175-9	11	354
21	Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. <i>Fuel</i> , 2007 , 86, 2560-2567	7.1	180
20	Some aspects of biodiesel oxidative stability. Fuel Processing Technology, 2007, 88, 669-677	7.2	463

19	NMR characterization of dihydrosterculic acid and its methyl ester. <i>Lipids</i> , 2006 , 41, 393-6	1.6	27
18	Comparative citation analysis of duplicate or highly related publications. <i>Journal of the Association for Information Science and Technology</i> , 2006 , 57, 1830-1839		9
17	Analysis of oxidized biodiesel by 1H-NMR and effect of contact area with air. <i>European Journal of Lipid Science and Technology</i> , 2006 , 108, 493-500	3	87
16	Exhaust Emissions of Biodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology Engine[] <i>Energy & amp; Fuels</i> , 2006 , 20, 403-408	4.1	370
15	Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity[[Energy & amp; Fuels, 2005, 19, 1192-1200]	4.1	302
14	Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. <i>Fuel</i> , 2005 , 84, 1059-1065	7.1	610
13	Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. <i>Fuel Processing Technology</i> , 2005 , 86, 1059-1070	7.2	1580
12	Physical properties of oleochemical carbonates. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2005 , 82, 201-205	1.8	28
11	Determination of the fatty acid profile by 1H-NMR spectroscopy. <i>European Journal of Lipid Science and Technology</i> , 2004 , 106, 88-96	3	300
10	Production and properties of 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid conversion by Pseudomonas aeruginosa. <i>European Journal of Lipid Science and Technology</i> , 2004 , 106, 405-411	3	8
9	Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2003 , 80, 1021-1026	1.8	253
8	Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester?. <i>Fuel</i> , 2003 , 82, 971-975	7.1	443
7	Structure indices in FA chemistry. How relevant is the iodine value?. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2002 , 79, 847-854	1.8	287
6	Synthesis and characterization of long-chain 1,2-dioxo compounds. <i>Chemistry and Physics of Lipids</i> , 2002 , 115, 85-91	3.7	7
5	Synthesis and characterization of some long-chain diesters with branched or bulky moieties. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2000 , 77, 865-871	1.8	26
4	Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels. <i>ACS Symposium Series</i> , 1997 , 172-208	0.4	141
3	Cetane Numbers of Fatty Compounds:Influence of Compound Structure and of Various Potential Cetane Improvers 1997 ,		26
2	13 C NMR spectroscopy of unsaturated long-chain compounds: an evaluation of the unsaturated carbon signals as rational functions. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1995 , 615		9

Allylic mono- and di-hydroxylation of isolated double bonds with selenium dioxidelert-butyl hydroperoxide. NMR characterization of long-chain enols, allylic and saturated 1,4-diols, and enones. *Journal of the Chemical Society Perkin Transactions II*, **1994**, 1661-1669

18