Gerhard Knothe

List of Publications by Citations

Source: https://exaly.com/author-pdf/1107931/gerhard-knothe-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,289 90 35 90 h-index g-index citations papers 11,108 90 7.27 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
90	Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. <i>Fuel Processing Technology</i> , 2005 , 86, 1059-1070	7.2	1580
89	Designer Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. <i>Energy & amp; Fuels</i> , 2008 , 22, 1358-1364	4.1	966
88	Biodiesel and renewable diesel: A comparison. <i>Progress in Energy and Combustion Science</i> , 2010 , 36, 364	-37.36	616
87	Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. <i>Fuel</i> , 2005 , 84, 1059-1065	7.1	610
86	Improving biodiesel fuel properties by modifying fatty ester composition. <i>Energy and Environmental Science</i> , 2009 , 2, 759	35.4	465
85	Some aspects of biodiesel oxidative stability. Fuel Processing Technology, 2007, 88, 669-677	7.2	463
84	Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester?. <i>Fuel</i> , 2003 , 82, 971-975	7.1	443
83	Biodiesel fuels. <i>Progress in Energy and Combustion Science</i> , 2017 , 58, 36-59	33.6	376
82	Exhaust Emissions of Biodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology Engine [] <i>Energy & Comp.; Fuels</i> , 2006 , 20, 403-408	4.1	370
81	Moringa oleifera oil: a possible source of biodiesel. <i>Bioresource Technology</i> , 2008 , 99, 8175-9	11	354
80	Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity[[Energy & amp; Fuels, 2005, 19, 1192-1200]	4.1	302
79	Determination of the fatty acid profile by 1H-NMR spectroscopy. <i>European Journal of Lipid Science and Technology</i> , 2004 , 106, 88-96	3	300
78	Structure indices in FA chemistry. How relevant is the iodine value?. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2002 , 79, 847-854	1.8	287
77	A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2009 , 86, 843-85	5 £ .8	265
76	Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2003 , 80, 1021-1026	1.8	253
75	Evaluation of biodiesel obtained from cottonseed oil. Fuel Processing Technology, 2009, 90, 1157-1163	7.2	200
74	Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. <i>Fuel</i> , 2007 , 86, 2560-2567	7.1	180

(2010-2009)

73	Production and Evaluation of Biodiesel from Field Pennycress (Thlaspi arvense L.) Oill <i>Energy & Energy Fuels</i> , 2009 , 23, 4149-4155	4.1	156
7 2	Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels. <i>ACS Symposium Series</i> , 1997 , 172-208	0.4	141
71	A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?. <i>Green Chemistry</i> , 2011 , 13, 3048	10	127
70	A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel. <i>Bioresource Technology</i> , 2009 , 100, 5796-801	11	123
69	Fuel Properties of Highly Polyunsaturated Fatty Acid Methyl Esters. Prediction of Fuel Properties of Algal Biodiesel. <i>Energy & Energy</i> & 2012, 26, 5265-5273	4.1	109
68	A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel, 2014, 119, 6-13	7.1	99
67	Cuphea Oil as Source of Biodiesel with Improved Fuel Properties Caused by High Content of Methyl Decanoate. <i>Energy & Decanoate. Energy & Decanoat</i>	4.1	93
66	Analysis of oxidized biodiesel by 1H-NMR and effect of contact area with air. <i>European Journal of Lipid Science and Technology</i> , 2006 , 108, 493-500	3	87
65	Direct transesterification of spent coffee grounds for biodiesel production. <i>Fuel</i> , 2017 , 199, 157-161	7.1	85
64	Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. <i>Fuel</i> , 2009 , 88, 1064-1069	7.1	81
63	Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. <i>Industrial Crops and Products</i> , 2013 , 45, 355-359	5.9	75
62	Biodiesel: Current Trends and Properties. <i>Topics in Catalysis</i> , 2010 , 53, 714-720	2.3	72
61	Biodiesel from Milo (Thespesia populnea L.) seed oil. <i>Biomass and Bioenergy</i> , 2011 , 35, 4034-4039	5.3	69
60	Kinematic viscosity of fatty acid methyl esters: Prediction, calculated viscosity contribution of esters with unavailable data, and carbonbxygen equivalents. <i>Fuel</i> , 2011 , 90, 3217-3224	7.1	62
59	Biodiesel Derived from a Model Oil Enriched in Palmitoleic Acid, Macadamia Nut Oil. <i>Energy & Energy &</i>	4.1	52
58	Synthesis of Epoxidized Cardanol and Its Antioxidative Properties for Vegetable Oils and Biodiesel. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 901-906	8.3	48
57	Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters. <i>Fuel</i> , 2012 , 96, 535-540	7.1	39
56	Liquid-Phase Penetration under Unsteady In-Cylinder Conditions: Soy- and Cuphea-Derived Biodiesel Fuels Versus Conventional Diesel. <i>Energy & Energy & Energ</i>	4.1	39

55	The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition. <i>Fuel Processing Technology</i> , 2018 , 177, 75-80	7.2	35
54	Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel. <i>Industrial Crops and Products</i> , 2014 , 54, 226-232	5.9	35
53	Biodiesel from meadowfoam (Limnanthes alba L.) seed oil: oxidative stability and unusual fatty acid composition. <i>Energy and Environmental Science</i> , 2010 , 3, 318	35.4	35
52	Avocado and olive oil methyl esters. <i>Biomass and Bioenergy</i> , 2013 , 58, 143-148	5.3	30
51	Glycerolysis with crude glycerin as an alternative pretreatment for biodiesel production from grease trap waste: Parametric study and energy analysis. <i>Journal of Cleaner Production</i> , 2017 , 162, 504-	5 1 9·3	28
50	Physical properties of oleochemical carbonates. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2005 , 82, 201-205	1.8	28
49	NMR characterization of dihydrosterculic acid and its methyl ester. <i>Lipids</i> , 2006 , 41, 393-6	1.6	27
48	Cetane Numbers of Fatty Compounds:Influence of Compound Structure and of Various Potential Cetane Improvers 1997 ,		26
47	Synthesis and characterization of some long-chain diesters with branched or bulky moieties. <i>JAOCS</i> , <i>Journal of the American Oil Chemistsr Society</i> , 2000 , 77, 865-871	1.8	26
46	Production and Properties of Biodiesel from Algal Oils 2013 , 207-221		24
45	Exhaust emissions and mutagenic effects of diesel fuel, biodiesel and biodiesel blends. <i>Fuel</i> , 2013 , 103, 414-420	7.1	24
44	Biodiesel exhaust: the need for a systematic approach to health effects research. <i>Respirology</i> , 2015 , 20, 1034-45	3.6	22
43	Kapok oil methyl esters. <i>Biomass and Bioenergy</i> , 2014 , 66, 419-425	5.3	21
42	Kenaf oil methyl esters. <i>Industrial Crops and Products</i> , 2013 , 49, 568-572	5.9	20
41	Fatty Acid Alkyl Esters as Solvents: Evaluation of the Kauri-Butanol Value. Comparison to Hydrocarbons, Dimethyl Diesters, and Other Oxygenates. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 4177-4182	3.9	20
40	Other Uses of Biodiesel 2010 , 401-403		20
39	Allylic mono- and di-hydroxylation of isolated double bonds with selenium dioxidelert-butyl hydroperoxide. NMR characterization of long-chain enols, allylic and saturated 1,4-diols, and enones. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1994 , 1661-1669		18
38	Beyond Fatty Acid Methyl Esters: Expanding the Renewable Carbon Profile with Alkenones from Isochrysis sp <i>Energy & Documents</i> 2012, 26, 2434-2441	4.1	17

37	Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids. <i>European Journal of Lipid Science and Technology</i> , 2011 , 113, 980-984	3	16
36	Evaluation of ball and disc wear scar data in the HFRR lubricity test. <i>Lubrication Science</i> , 2008 , 20, 35-45	1.3	16
35	Methyl Esters (Biodiesel) from and Fatty Acid Profile of Gliricidia sepium Seed Oil. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2015 , 92, 769-775	1.8	15
34	A Comprehensive Evaluation of the Density of Neat Fatty Acids and Esters. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2014 , 91, 1711-1722	1.8	15
33	Fatty Acid Profile of Kenaf Seed Oil. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2013 , 90, 835-	848	14
32	Decarboxylation of Fatty Acids with Triruthenium Dodecacarbonyl: Influence of the Compound Structure and Analysis of the Product Mixtures. <i>ACS Omega</i> , 2017 , 2, 6473-6480	3.9	13
31	Synthesis and Analysis of an Alkenone-Free Biodiesel from Isochrysis sp <i>Energy & amp; Fuels</i> , 2014 , 28, 2677-2683	4.1	13
30	Will biodiesel derived from algal oils live up to its promise? A fuel property assessment. <i>Lipid Technology</i> , 2011 , 23, 247-249		12
29	Analysis and Properties of the Decarboxylation Products of Oleic Acid by Catalytic Triruthenium Dodecacarbonyl. <i>Energy & Dodecacarbonyl. Energy &</i>	4.1	11
28	Fatty acid profile of seashore mallow (Kosteletzkya pentacarpos) seed oil and properties of the methyl esters. <i>European Journal of Lipid Science and Technology</i> , 2015 , 117, 1287-1294	3	10
27	Comparative citation analysis of duplicate or highly related publications. <i>Journal of the Association for Information Science and Technology</i> , 2006 , 57, 1830-1839		9
26	13 C NMR spectroscopy of unsaturated long-chain compounds: an evaluation of the unsaturated carbon signals as rational functions. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1995 , 615		9
25	Biodiesel and Its Properties 2016 , 15-42		9
24	Methyl esters (biodiesel) from Pachyrhizus erosus seed oil. <i>Biofuels</i> , 2018 , 9, 449-454	2	8
23	Production and properties of 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid conversion by Pseudomonas aeruginosa. <i>European Journal of Lipid Science and Technology</i> , 2004 , 106, 405-411	3	8
22	Decolorization improves the fuel properties of algal biodiesel from Isochrysis sp Fuel, 2016 , 179, 229-2	13 / 41	8
21	Improvement of Diesel Lubricity by Chemically Modified Tung-Oil-Based Fatty Acid Esters as Additives. <i>Energy & Diesel Lubricity</i> 833, 5110-5115	4.1	7
20	Cuphea Oil as a Potential Biodiesel Feedstock to Improve Fuel Properties. <i>Journal of Energy Engineering - ASCE</i> , 2014 , 140,	1.7	7

19	Fuel properties of methyl esters of borage and black currant oils containing methyl linolenate. <i>European Journal of Lipid Science and Technology</i> , 2013 , 115, 901-908	3	7
18	Synthesis and characterization of long-chain 1,2-dioxo compounds. <i>Chemistry and Physics of Lipids</i> , 2002 , 115, 85-91	3.7	7
17	Composition of Some Apiaceae Seed Oils Includes Phytochemicals, and Mass Spectrometry of Fatty Acid 2-Methoxyethyl Esters. <i>European Journal of Lipid Science and Technology</i> , 2019 , 121, 1800386	3	7
16	Fatty Acid Profiles of Some Fabaceae Seed Oils. <i>JAOCS, Journal of the American Oil Chemistsr Society,</i> 2016 , 93, 1007-1011	1.8	6
15	1,2-Isopropylidene Glycerol Carbonate: Preparation, Characterization, and Hydrolysis. <i>JAOCS, Journal of the American Oil ChemistsrSociety</i> , 2008 , 85, 365-372	1.8	5
14	Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid. <i>European Journal of Lipid Science and Technology</i> , 2015 , 117, 567-574	3	4
13	Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	2
12	The Potential of Biodiesel with Improved Properties to an Alternative Energy Mix. <i>Green Energy and Technology</i> , 2011 , 75-82	0.6	2
11	Fatty acids, triterpenes and cycloalkanes in ficus seed oils. <i>Plant Physiology and Biochemistry</i> , 2019 , 135, 127-131	5.4	2
10	Analysis of Biodiesel 2017 , 1-15		1
10 9	Analysis of Biodiesel 2017 , 1-15 Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2017 , 94, 537-549	1.8	1
	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization.	1.8	
9	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. JAOCS, Journal of the American Oil Chemistsr Society, 2017, 94, 537-549		1
9	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2017 , 94, 537-549 Comment on Biodiesel Production from Freshwater Algaell <i>Energy & Discourse (State of State of State</i>	4.1	1
9 8 7	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2017 , 94, 537-549 Comment on Biodiesel Production from Freshwater Algaell <i>Energy & Diamonal Community</i> , 2010, 24, 3299-3300 Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties. <i>Biofuels</i> , 2019 , 10, 239-243 Fatty Acid Profiles of Garuga floribunda, Ipomoea pes-caprae, Melanolepis multiglandulosa and	4.1	1
9 8 7 6	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2017 , 94, 537-549 Comment on Biodiesel Production from Freshwater Algaell Energy &	4.1	1
9 8 7 6	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2017 , 94, 537-549 Comment on Biodiesel Production from Freshwater Algaell Energy &	4.1	1

LIST OF PUBLICATIONS

Biodiesel Lubricity and Other Properties **2014**, 483-500