Bryan R Lajoie

List of Publications by Citations

Source: https://exaly.com/author-pdf/11077775/bryan-r-lajoie-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 17,195 31 45 g-index

45 21,960 24.1 6.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
44	Comprehensive mapping of long-range interactions reveals folding principles of the human genome. <i>Science</i> , 2009 , 326, 289-93	33.3	4993
43	Spatial partitioning of the regulatory landscape of the X-inactivation centre. <i>Nature</i> , 2012 , 485, 381-5	50.4	1894
42	A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. <i>Nature</i> , 2011 , 472, 120-4	50.4	1502
41	The long-range interaction landscape of gene promoters. <i>Nature</i> , 2012 , 489, 109-13	50.4	1066
40	Architectural protein subclasses shape 3D organization of genomes during lineage commitment. <i>Cell</i> , 2013 , 153, 1281-95	56.2	848
39	Iterative correction of Hi-C data reveals hallmarks of chromosome organization. <i>Nature Methods</i> , 2012 , 9, 999-1003	21.6	822
38	HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. <i>Genome Biology</i> , 2015 , 16, 259	18.3	811
37	Organization of the mitotic chromosome. <i>Science</i> , 2013 , 342, 948-53	33.3	654
36	Activation of proto-oncogenes by disruption of chromosome neighborhoods. <i>Science</i> , 2016 , 351, 1454-	1458	600
35	Condensin-driven remodelling of X chromosome topology during dosage compensation. <i>Nature</i> , 2015 , 523, 240-4	50.4	501
34	Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. <i>Cell</i> , 2012 , 148, 908-21	56.2	411
33	Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma. <i>New England Journal of Medicine</i> , 2016 , 374, 1842-1852	59.2	312
32	Structural organization of the inactive X chromosome in the mouse. <i>Nature</i> , 2016 , 535, 575-9	50.4	261
31	Heterochromatin drives compartmentalization of inverted and conventional nuclei. <i>Nature</i> , 2019 , 570, 395-399	50.4	236
30	Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. <i>Genome Research</i> , 2013 , 23, 2066-77	9.7	232
29	The three-dimensional folding of the Eglobin gene domain reveals formation of chromatin globules. <i>Nature Structural and Molecular Biology</i> , 2011 , 18, 107-14	17.6	232
28	MORC family ATPases required for heterochromatin condensation and gene silencing. <i>Science</i> , 2012 , 336, 1448-51	33.3	220

(2015-2015)

27	The Hitchhiker's guide to Hi-C analysis: practical guidelines. <i>Methods</i> , 2015 , 72, 65-75	4.6	209
26	Detection of long repeat expansions from PCR-free whole-genome sequence data. <i>Genome Research</i> , 2017 , 27, 1895-1903	9.7	159
25	Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. <i>Genes and Development</i> , 2015 , 29, 1661-75	12.6	150
24	Integrative detection and analysis of structural variation in cancer genomes. <i>Nature Genetics</i> , 2018 , 50, 1388-1398	36.3	147
23	Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. <i>Genome Biology</i> , 2015 , 16, 214	18.3	123
22	HiTC: exploration of high-throughput Y CYexperiments. <i>Bioinformatics</i> , 2012 , 28, 2843-4	7.2	119
21	Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus. <i>American Journal of Human Genetics</i> , 2016 , 98, 185-201	11	91
20	My5C: web tools for chromosome conformation capture studies. <i>Nature Methods</i> , 2009 , 6, 690-1	21.6	74
19	SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. <i>Genome Research</i> , 2016 , 26, 1188-201	9.7	64
18	ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. <i>Bioinformatics</i> , 2019 , 35, 4754-4756	7.2	62
17	Measuring the reproducibility and quality of Hi-C data. <i>Genome Biology</i> , 2019 , 20, 57	18.3	62
16	High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila. <i>Molecular Cell</i> , 2015 , 60, 146-62	17.6	58
15	RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2016 , 1859, 1389-1397	6	43
14	Higher-Order Organization Principles of Pre-translational mRNPs. <i>Molecular Cell</i> , 2018 , 72, 715-726.e3	17.6	39
13	ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. <i>Genome Biology</i> , 2020 , 21, 102	18.3	29
12	X-linked hypomyelination with spondylometaphyseal dysplasia (H-SMD) associated with mutations in AIFM1. <i>Neurogenetics</i> , 2017 , 18, 185-194	3	28
11	Highly structured homolog pairing reflects functional organization of the Drosophila genome. <i>Nature Communications</i> , 2019 , 10, 4485	17.4	26
10	The Conformation of Yeast Chromosome III Is Mating Type Dependent and Controlled by the Recombination Enhancer. <i>Cell Reports</i> , 2015 , 13, 1855-67	10.6	23

9	Heterochromatin drives organization of conventional and inverted nuclei		19	
8	Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 194, 1465-1474	10.2	18	
7	The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos. <i>Nature Communications</i> , 2019 , 10, 4486	17.4	16	
6	Genome sequencing in persistently unsolved white matter disorders. <i>Annals of Clinical and Translational Neurology</i> , 2020 , 7, 144-152	5.3	13	
5	An Integrative Framework for Detecting Structural Variations in Cancer Genomes		11	
4	Measuring the reproducibility and quality of Hi-C data		6	
3	Highly structured homolog pairing reflects functional organization of the Drosophila genome		4	
2	The genome-wide, multi-layered architecture of chromosome pairing in early Drosophila embryos		3	
1	Higher-Order Organization Principles of Pre-translational mRNPs		1	