Jaroslaw W Zmijewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1107736/publications.pdf

Version: 2024-02-01

93792 116156 4,928 67 39 66 citations g-index h-index papers 69 69 69 8719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
2	Restoration of SIRT3 gene expression by airway delivery resolves age-associated persistent lung fibrosis in mice. Nature Aging, 2021, 1, 205-217.	5. 3	32
3	Bioenergetic maladaptation and release of HMGB1 in calcineurin inhibitor-mediated nephrotoxicity. American Journal of Transplantation, 2021, 21, 2964-2977.	2.6	6
4	Differential and Overlapping Effects of Melatonin and Its Metabolites on Keratinocyte Function: Bioinformatics and Metabolic Analyses. Antioxidants, 2021, 10, 618.	2.2	5
5	NETosis in the pathogenesis of acute lung injury following cutaneous chemical burns. JCI Insight, 2021, 6, .	2.3	24
6	AMPK activates Parkin independent autophagy and improves post sepsis immune defense against secondary bacterial lung infections. Scientific Reports, 2021, 11, 12387.	1.6	12
7	ZKSCAN3 in severe bacterial lung infection and sepsis-induced immunosuppression. Laboratory Investigation, 2021, 101, 1467-1474.	1.7	8
8	Metformin: Experimental and Clinical Evidence for a Potential Role in Emphysema Treatment. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 651-666.	2.5	49
9	Human Leukocyte Antigen-DR Deficiency and Immunosuppression-Related End-Organ Failure in SARS-CoV2 Infection. Anesthesia and Analgesia, 2020, 131, 989-992.	1.1	6
10	NOX2 decoy peptides disrupt trauma-mediated neutrophil immunosuppression and protect against lethal peritonitis. Redox Biology, 2020, 36, 101651.	3.9	5
11	Oxidative cross-linking of fibronectin confers protease resistance and inhibits cellular migration. Science Signaling, 2020, 13, .	1.6	8
12	Protective role of HOâ€1 against acute kidney injury caused by cutaneous exposure to arsenicals. Annals of the New York Academy of Sciences, 2020, 1480, 155-169.	1.8	8
13	Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochemistry and Biophysics, 2020, 78, 165-180.	0.9	113
14	Mitochondrial Uncoupling Proteinâ€⊋ Drives Fibroblast Senescence in Ageâ€Related Lung Fibrosis by Altering Bioenergetics and Reactive Oxygen Species. FASEB Journal, 2020, 34, 1-1.	0.2	1
15	SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight, 2019, 4, .	2.3	105
16	Mitochondrial Uncoupling Proteinâ€⊋ and Fibroblast Senescence in Ageâ€Related Lung Fibrosis. FASEB Journal, 2019, 33, 543.6.	0.2	0
17	Metformin reverses established lung fibrosis in a bleomycin model. Nature Medicine, 2018, 24, 1121-1127.	15.2	411
18	Impaired efferocytosis and neutrophil extracellular trap clearance by macrophages in ARDS. European Respiratory Journal, 2018, 52, 1702590.	3.1	132

#	Article	IF	CITATIONS
19	Frontline Science: HMGB1 induces neutrophil dysfunction in experimental sepsis and in patients who survive septic shock. Journal of Leukocyte Biology, 2017, 101, 1281-1287.	1.5	55
20	Melatonin, mitochondria, and the skin. Cellular and Molecular Life Sciences, 2017, 74, 3913-3925.	2.4	131
21	Frontline Science: D1 dopaminergic receptor signaling activates the AMPK-bioenergetic pathway in macrophages and alveolar epithelial cells and reduces endotoxin-induced ALI. Journal of Leukocyte Biology, 2017, 101, 357-365.	1.5	47
22	Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis. Infection and Chemotherapy, 2017, 49, 10.	1.0	40
23	Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget, 2016, 7, 75407-75424.	0.8	66
24	The matricellular protein CCN1 enhances TGFâ€Î²1/SMAD3â€dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB Journal, 2016, 30, 2135-2150.	0.2	60
25	N-cadherin coordinates AMP kinase-mediated lung vascular repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L71-L85.	1.3	14
26	Novel Mechanisms for the Antifibrotic Action of Nintedanib. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 51-59.	1.4	163
27	AMP-Activated Protein Kinase and Glycogen Synthase Kinase $3\hat{l}^2$ Modulate the Severity of Sepsis-induced Lung injury. Molecular Medicine, 2015, 21, 937-950.	1.9	50
28	Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2015, 135, 413-424.e15.	1.5	25
29	Generation of Reactive Oxygen Species Mediated by 1-Hydroxyphenazine, a Virulence Factor of <i>Pseudomonas aeruginosa </i> Chemical Research in Toxicology, 2015, 28, 175-181.	1.7	12
30	Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase. Cellular Signalling, 2015, 27, 1186-1197.	1.7	33
31	Metabolic Reprogramming Is Required for Myofibroblast Contractility and Differentiation. Journal of Biological Chemistry, 2015, 290, 25427-25438.	1.6	140
32	GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L735-L745.	1.3	67
33	Exposure to cigarette smoke impacts myeloid-derived regulatory cell function and exacerbates airway hyper-responsiveness. Laboratory Investigation, 2014, 94, 1312-1325.	1.7	6
34	Interaction of the Cell Adhesion Molecule CHL1 with Vitronectin, Integrins, and the Plasminogen Activator Inhibitor-2 Promotes CHL1-Induced Neurite Outgrowth and Neuronal Migration. Journal of Neuroscience, 2014, 34, 14606-14623.	1.7	45
35	Human Resistin Promotes Neutrophil Proinflammatory Activation and Neutrophil Extracellular Trap Formation and Increases Severity of Acute Lung Injury. Journal of Immunology, 2014, 192, 4795-4803.	0.4	87
36	Heat-shock Response Increases Lung Injury Caused by <i>Pseudomonas aeruginosa via</i> Interleukin-10-dependent Mechanism in Mice. Anesthesiology, 2014, 120, 1450-1462.	1.3	13

#	Article	IF	CITATIONS
37	Exposure to Cigarette Smoke Impacts Myeloid-Derived Regulatory Cell Function and Exacerbates Airway Hyper-Responsiveness. Journal of Allergy and Clinical Immunology, 2013, 131, AB61.	1.5	O
38	Metformin-stimulated AMPK- $\hat{l}\pm 1$ promotes microvascular repair in acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L844-L855.	1.3	72
39	HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L342-L349.	1.3	269
40	Enhancement of Antitumor Immunity in Lung Cancer by Targeting Myeloid-Derived Suppressor Cell Pathways. Cancer Research, 2013, 73, 6609-6620.	0.4	75
41	Vitronectin Inhibits Efferocytosis through Interactions with Apoptotic Cells as well as with Macrophages. Journal of Immunology, 2013, 190, 2273-2281.	0.4	27
42	Mitochondria and AMP-activated Protein Kinase-dependent Mechanism of Efferocytosis. Journal of Biological Chemistry, 2013, 288, 26013-26026.	1.6	55
43	Activation of AMPK Enhances Neutrophil Chemotaxis and Bacterial Killing. Molecular Medicine, 2013, 19, 387-398.	1.9	87
44	HMGB1 Accelerates Alveolar Epithelial Repair via an IL- $1\hat{1}^2$ - and $\hat{1}\pm\nu\hat{1}^2$ 6 Integrin-dependent Activation of TGF- $\hat{1}^2$ 1. PLoS ONE, 2013, 8, e63907.	1.1	43
45	Lysophosphatidylcholineâ€induced mitochondrial ROS formation and activation of AMPK promote macrophage chemotaxis and efferocytosis. FASEB Journal, 2013, 27, 254.10.	0.2	1
46	Vitronectin Inhibits Neutrophil Apoptosis through Activation of Integrin-Associated Signaling Pathways. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 790-796.	1.4	31
47	Differential activation of RAGE by HMGB1 modulates neutrophil-associated NADPH oxidase activity and bacterial killing. American Journal of Physiology - Cell Physiology, 2012, 302, C249-C256.	2.1	56
48	Toll-Like Receptor 4 Engagement Inhibits Adenosine 5′-Monophosphate-Activated Protein Kinase Activation through a High Mobility Group Box 1 Protein-Dependent Mechanism. Molecular Medicine, 2012, 18, 659-668.	1.9	61
49	AMPâ€activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. FASEB Journal, 2011, 25, 4358-4368.	0.2	113
50	Elevated levels of NO are localized to distal airways in asthma. Free Radical Biology and Medicine, 2011, 50, 1679-1688.	1.3	20
51	Intracellular HMGB1 Negatively Regulates Efferocytosis. Journal of Immunology, 2011, 187, 4686-4694.	0.4	60
52	Inhibition of neutrophil apoptosis by PAI-1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L247-L254.	1.3	35
53	Modulation of SCFÎ ² -TrCP-dependent lÎ [®] Bα Ubiquitination by Hydrogen Peroxide. Journal of Biological Chemistry, 2010, 285, 2665-2675.	1.6	24
54	Exposure to Hydrogen Peroxide Induces Oxidation and Activation of AMP-activated Protein Kinase*. Journal of Biological Chemistry, 2010, 285, 33154-33164.	1.6	333

#	Article	IF	Citations
55	S-Glutathionylation of the Rpn2 Regulatory Subunit Inhibits 26 S Proteasomal Function. Journal of Biological Chemistry, 2009, 284, 22213-22221.	1.6	55
56	Participation of Mammalian Target of Rapamycin Complex 1 in Toll-Like Receptor 2– and 4–Induced Neutrophil Activation and Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 237-245.	1.4	108
57	Antiinflammatory Effects of Hydrogen Peroxide in Neutrophil Activation and Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 694-704.	2.5	89
58	Participation of mitochondrial respiratory complex III in neutrophil activation and lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L624-L634.	1.3	53
59	Mitochondrial Respiratory Complex I Regulates Neutrophil Activation and Severity of Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 168-179.	2.5	150
60	Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L497-L504.	1.3	281
61	Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. American Journal of Physiology - Cell Physiology, 2008, 294, C985-C993.	2.1	71
62	PAI-1 inhibits neutrophil efferocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11784-11789.	3.3	127
63	HMGB1 Develops Enhanced Proinflammatory Activity by Binding to Cytokines. Journal of Immunology, 2008, 180, 2531-2537.	0.4	353
64	Exposure to hydrogen peroxide diminishes NF-κB activation, lκB-α degradation, and proteasome activity in neutrophils. American Journal of Physiology - Cell Physiology, 2007, 293, C255-C266.	2.1	59
65	Activation of Mitogen-Activated Protein Kinases by Lysophosphatidylcholine-Induced Mitochondrial Reactive Oxygen Species Generation in Endothelial Cells. American Journal of Pathology, 2006, 168, 1737-1748.	1.9	86
66	Modification of lipids by reactive oxygen and nitrogen species: the oxy–nitroxy–lipidome and its role in redox cell signaling. Future Lipidology, 2006, 1, 203-211.	0.5	7
67	Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H852-H861.	1.5	122