Mira Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11076697/publications.pdf

Version: 2024-02-01

236833 276775 4,821 58 25 41 citations h-index g-index papers 59 59 59 8906 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nature Genetics, 2022, 54, 625-636.	9.4	31
2	Haploinsufficiency of cohesin protease, Separase, promotes regeneration of hematopoietic stem cells in mice. Stem Cells, 2020, 38, 1624-1636.	1.4	1
3	The safety and clinical effects of administering a multiantigen-targeted T cell therapy to patients with multiple myeloma. Science Translational Medicine, 2020, 12 , .	5.8	25
4	Large DNA Methylation Nadirs Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Molecular Cell, 2020, 78, 506-521.e6.	4.5	72
5	Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis. Blood, 2020, 135, 845-856.	0.6	27
6	Single Cell Profiling of DNMT3A-Mutant Progenitors Reveals LY86 As a Novel Pre-Leukemia Marker and Potential Therapeutic Target. Blood, 2019, 134, 2724-2724.	0.6	0
7	Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells InÂVivo. Cell Reports, 2018, 23, 1-10.	2.9	159
8	PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell, 2018, 23, 700-713.e6.	5.2	272
9	DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biology, 2018, 19, 88.	3.8	120
10	High Prevalence of PPM1D Mutations in Therapy-Related AML/MDS Is Due to Context-Specific Clonal Hematopoiesis. Blood, 2018, 132, 746-746.	0.6	0
11	A Gene Depleted DNA Methylation Canyon Maintains Hematopoietic Stem Cell Self-Renewal and NPM1c+ Leukemia By Regulating the Gene Expression of HOXA Cluster. Blood, 2018, 132, 649-649.	0.6	O
12	Genome-Wide Analysis of DNA Methylation in Hematopoietic Cells: DNA Methylation Analysis by WGBS. Methods in Molecular Biology, 2017, 1633, 137-149.	0.4	5
13	Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nature Communications, 2017, 8, 16026.	5.8	158
14	Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Research, 2017, 27, 1034-1045.	5.7	259
15	DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biology, 2017, 18, 176.	3.8	153
16	Terminal Differentiation Is the Major Route of Hematopoietic Stem Cell Loss During Chronic Infection. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
17	Chronic Infection Depletes Hematopoietic Stem Cells through Stress-Induced Terminal Differentiation. Cell Reports, 2016, 17, 2584-2595.	2.9	196
18	DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood, 2016, 128, 971-981.	0.6	107

#	Article	IF	CITATIONS
19	DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nature Genetics, 2016, 48, 1014-1023.	9.4	200
20	DNMT3A Loss Drives Enhancer Hypomethylation in FLT3-ITD-Associated Leukemias. Cancer Cell, 2016, 29, 922-934.	7.7	107
21	DNA Epigenome Editing Using Crispr-Cas Suntag-Directed DNMT3A. Blood, 2016, 128, 2707-2707.	0.6	3
22	Chronic Infection Depletes Hematopoietic Stem Cells through Stress-Induced Terminal Differentiation. Blood, 2016, 128, 732-732.	0.6	1
23	High Order Chromatin Structure Regulates Gene Expression in Hematopoietic Stem Cell Self-Renewal and Erythroid Differentiation. Blood, 2016, 128, 1033-1033.	0.6	0
24	Crispr Engineering in CD34+ Progenitors Reveals Cis-Acting Regulatory Regions Mediating 3D Interactions and Stem Cell Fate Decisions. Blood, 2016, 128, 1466-1466.	0.6	0
25	Long Non-Coding RNAs Control Hematopoietic Stem Cell Function. Cell Stem Cell, 2015, 16, 426-438.	5.2	147
26	Acute loss of TET function results in aggressive myeloid cancer in mice. Nature Communications, 2015, 6, 10071.	5.8	147
27	Chronic Infection Drives Hematopoietic Stem Cell Exhaustion through Differentiation and a Lowered Threshold for Apoptosis. Blood, 2015, 126, 2406-2406.	0.6	0
28	Large conserved domains of low DNA methylation maintained by Dnmt3a. Nature Genetics, 2014, 46, 17-23.	9.4	276
29	New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Experimental Hematology, 2014, 42, 609-617.	0.2	37
30	Dnmt3a and Dnmt3b Have Overlapping and Distinct Functions in Hematopoietic Stem Cells. Cell Stem Cell, 2014, 15, 350-364.	5.2	288
31	Epigenomic Profiling of Young and Aged HSCs Reveals Concerted Changes during Aging that Reinforce Self-Renewal. Cell Stem Cell, 2014, 14, 673-688.	5.2	524
32	Dnmt3a and Tet2 interact to Repress differentiation lineage-specific transcriptional factors in Hematopoietic Stem Cells By the Regulation of Epigenome. Blood, 2014, 124, 242-242.	0.6	0
33	DOT1L As a Therapeutic Target for the Treatment of DNMT3A-Mutant Acute Myeloid Leukemia. Blood, 2014, 124, 614-614.	0.6	0
34	Flow cytometry analysis of murine hematopoietic stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 27-37.	1.1	107
35	Isolation and Characterization of Mouse Side Population Cells. Methods in Molecular Biology, 2013, 946, 151-162.	0.4	20
36	Confounding by Repetitive Elements and CpG Islands Does Not Explain the Association between Hypomethylation and Genomic Instability. PLoS Genetics, 2013, 9, e1003333.	1.5	3

#	Article	IF	CITATIONS
37	Dnmt3a-Deletion Accelerates FLT3-ITD Malignancies In Mice By Hypomethylation Of Enhancer Sites and Activating Stem Cell Programs; Implications For Therapy. Blood, 2013, 122, 595-595.	0.6	1
38	Dnmt3b Has Few Specific Functions In Adult Hematopoietic Stem Cells But Shows Abnormal Activity In The Absence Of Dnmt3a. Blood, 2013, 122, 734-734.	0.6	5
39	Long Non-Coding RNAs Control Hematopoietic Stem Cells (HSC) Function. Blood, 2013, 122, 48-48.	0.6	0
40	Large Conserved Domains Of Low DNA Methylation Maintained By 5-Hydroxymethycytosine and Dnmt3a. Blood, 2013, 122, 2406-2406.	0.6	0
41	Combined Effect Of Dnmt3a Loss-Of-Function and Idh2 neomorphic mutation Promotes Hematopoietic Malignancy. Blood, 2013, 122, 884-884.	0.6	0
42	Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome. PLoS Genetics, 2012, 8, e1002692.	1.5	80
43	VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa. Cellular Immunology, 2012, 280, 1-9.	1.4	11
44	Less Is More: Unveiling the Functional Core of Hematopoietic Stem Cells through Knockout Mice. Cell Stem Cell, 2012, 11, 302-317.	5.2	164
45	Dnmt3a is essential for hematopoietic stem cell differentiation. Nature Genetics, 2012, 44, 23-31.	9.4	916
46	HSC Aging Epigenome: Widespread Alterations in DNA Methylation and Transcription Blood, 2012, 120, 2329-2329.	0.6	0
47	Dnmt3b Is Dispensable for Hematopoietic Stem Cell Differentiation, but Acts Synergistically with Dnmt3a to Control the Balance Between Self-Renewal and Differentiation. Blood, 2012, 120, 848-848.	0.6	0
48	Dnmt3a Deletion and FLT3-ITD Cooperate in a Mouse Model of T-Lymphoblastic Leukemia (T-ALL) Blood, 2012, 120, 2428-2428.	0.6	2
49	Histone Alterations Are Associated with Hematopoietic Stem Cell (HSC) Differentiation and Aging. Blood, 2012, 120, 1188-1188.	0.6	0
50	IL-22 producing NKp46+ innate lymphoid cells can differentiate from hematopoietic precursor cells. Immunology Letters, 2011, 141, 61-67.	1.1	3
51	Dnmt3a Is Essential for Hematopoietic Stem Cell Differentiation. Blood, 2011, 118, 386-386.	0.6	7
52	Genome Wide DNA Methylation and Transcriptome Analysis in HSC Aging. Blood, 2011, 118, 2367-2367.	0.6	0
53	TXNIP regulates germinal center generation by suppressing BCL-6 expression. Immunology Letters, 2010, 129, 78-84.	1.1	17
54	Thioredoxin-Interacting Protein Regulates Hematopoietic Stem Cell Quiescence and Mobilization under Stress Conditions. Journal of Immunology, 2009, 183, 2495-2505.	0.4	49

Mira Jeong

#	Article	IF	CITATIONS
55	Pseudomonas aeruginosa Eliminates Natural Killer Cells via Phagocytosis-Induced Apoptosis. PLoS Pathogens, 2009, 5, e1000561.	2.1	29
56	Osteopontin Promotes the Development of Natural Killer Cells from Hematopoietic Stem Cells. Stem Cells, 2008, 26, 2114-2123.	1.4	24
57	VDUP1 mediates nuclear export of HIF1α via CRM1-dependent pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 838-848.	1.9	57
58	Expression of Gpnmb in NK Cell Development from Hematopoietic Stem Cells. Immune Network, 2008, 8, 53.	1.6	0