
Sassan Saatchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11075557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 2014, 514, 213-217.	13.7	648
2	21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9, 536.	5.8	485
3	Greenhouse gas emissions intensity of globalÂcroplands. Nature Climate Change, 2017, 7, 63-68.	8.1	414
4	Widespread decline of Congo rainforest greenness in the past decade. Nature, 2014, 509, 86-90.	13.7	351
5	Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 2015, 21, 1762-1776.	4.2	339
6	Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 565-570.	3.3	334
7	Upslope migration of Andean trees. Journal of Biogeography, 2011, 38, 783-791.	1.4	306
8	Measuring and modelling biodiversity from space. Progress in Physical Geography, 2008, 32, 203-221.	1.4	303
9	Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1779-1785.	1.8	290
10	Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130171.	1.2	245
11	Environmental change and the carbon balance of <scp>A</scp> mazonian forests. Biological Reviews, 2014, 89, 913-931.	4.7	208
12	Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography, 2008, 35, 1160-1176.	1.4	178
13	The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 2019, 227, 44-60.	4.6	172
14	Tropical forests did not recover from the strong 2015–2016 El Niño event. Science Advances, 2020, 6, eaay4603.	4.7	127
15	Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics, 2019, 40, 863-880.	2.1	91
16	Compositional shifts in <scp>C</scp> osta <scp>R</scp> ican forests due to climateâ€driven species migrations. Global Change Biology, 2013, 19, 3472-3480.	4.2	87
17	Response of African humid tropical forests to recent rainfall anomalies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120306.	1.8	75
18	Seeing the forest beyond the trees. Global Ecology and Biogeography, 2015, 24, 606-610.	2.7	56

SASSAN SAATCHI

#	Article	lF	CITATIONS
19	Recent Amplified Global Gross Primary Productivity Due to Temperature Increase Is Offset by Reduced Productivity Due to Water Constraints. AGU Advances, 2020, 1, e2020AV000180.	2.3	50
20	Detecting vulnerability of humid tropical forests to multiple stressors. One Earth, 2021, 4, 988-1003.	3.6	41
21	Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences, 2018, 15, 3377-3390.	1.3	32
22	Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nature Communications, 2020, 11, 1900.	5.8	30
23	Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 2021, 12, 2138.	5.8	26
24	Forest degradation and biomass loss along the ChocÃ ³ region of Colombia. Carbon Balance and Management, 2019, 14, 2.	1.4	23
25	Human and Climate Effects on the Hamoun Wetlands. Weather, Climate, and Society, 2019, 11, 609-622.	0.5	22
26	The production, storage, and flow of carbon in Amazonian forests. Geophysical Monograph Series, 2009, , 355-372.	0.1	19
27	Below-surface water mediates the response of African forests to reduced rainfall. Environmental Research Letters, 2020, 15, 034063.	2.2	18
28	A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories. Remote Sensing of Environment, 2020, 251, 112056.	4.6	17
29	Satellite Observations of the Tropical Terrestrial Carbon Balance and Interactions With the Water Cycle During the 21st Century. Reviews of Geophysics, 2021, 59, e2020RG000711.	9.0	13
30	Gap models across micro- to mega-scales of time and space: examples of Tansley's ecosystem concept. Forest Ecosystems, 2020, 7, .	1.3	12
31	Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height. Remote Sensing, 2016, 8, 494.	1.8	11
32	Bamboo phenology and life cycle drive seasonal and longâ€ŧerm functioning of Amazonian bambooâ€dominated forests. Journal of Ecology, 2021, 109, 860-876.	1.9	11
33	PREFACE: DESDynl VEG-3D Special Issue. Remote Sensing of Environment, 2011, 115, 2752.	4.6	5
34	CARDAMOM-FluxVal version 1.0: a FLUXNET-based validation system for CARDAMOM carbon and water flux estimates. Geoscientific Model Development, 2022, 15, 1789-1802.	1.3	5
35	Spatial conservation planning framework for assessing conservation opportunities in the Atlantic Forest of Brazil. Applied Geography, 2014, 53, 369-376.	1.7	4
36	Mechanistic Processes Controlling Persistent Changes of Forest Canopy Structure After 2005 Amazon Drought. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3378-3390.	1.3	2