
Xiao-Lei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11075250/publications.pdf Version: 2024-02-01

XIAO-LEI SHI

#	Article	IF	CITATIONS
1	Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis. Journal of Materials Science and Technology, 2022, 98, 143-150.	10.7	27
2	Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te. Journal of Materials Science and Technology, 2022, 106, 249-256.	10.7	16
3	High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering. Nano Energy, 2022, 91, 106706.	16.0	107
4	High near-room temperature figure of merit of n-type Bi2GeTe4-based thermoelectric materials via a stepwise optimization of carrier concentration. Chemical Engineering Journal, 2022, 433, 133775.	12.7	24
5	Achieving Highâ€Performance Ge _{0.92} Bi _{0.08} Te Thermoelectrics via LaB ₆ â€Alloyingâ€Induced Band Engineering and Multiâ€Scale Structure Manipulation. Small, 2022, 18, e2105923.	10.0	5
6	Thermoelectric Coolers: Progress, Challenges, and Opportunities. Small Methods, 2022, 6, e2101235.	8.6	77
7	Achieving ultrahigh power factor in n-type Ag2Se thin films by carrier engineering. Materials Today Energy, 2022, 24, 100933.	4.7	12
8	High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes. Journal of Materials Science and Technology, 2022, 114, 55-61.	10.7	29
9	Cheap, Large-Scale, and High-Performance Graphite-Based Flexible Thermoelectric Materials and Devices with Supernormal Industry Feasibility. ACS Applied Materials & Interfaces, 2022, 14, 8066-8075.	8.0	16
10	Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi ₂ Te ₃ â€Based Flexible Thinâ€Films. Advanced Science, 2022, 9, e2103547.	11.2	102
11	Biomassâ€Derived Carbon for Highâ€Performance Batteries: From Structure to Properties. Advanced Functional Materials, 2022, 32, .	14.9	71
12	Enhanced thermoelectric performance of n-type Nb-doped PbTe by compensating resonant level and inducing atomic disorder. Materials Today Physics, 2022, 24, 100677.	6.0	11
13	Thermoelectrics for medical applications: Progress, challenges, and perspectives. Chemical Engineering Journal, 2022, 437, 135268.	12.7	101
14	Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains. Chemical Engineering Journal, 2022, 441, 136131.	12.7	35
15	A Solvothermal Synthetic Environmental Design for Highâ€Performance SnSeâ€Based Thermoelectric Materials. Advanced Energy Materials, 2022, 12, .	19.5	82
16	Polycrystalline NiSe-Alloyed SnSe with Improved Medium-Temperature Thermoelectric Performance. Energy & Fuels, 2022, 36, 5352-5359.	5.1	6
17	Achieving high thermoelectric properties in PEDOT:PSS/SWCNTs composite films by a combination of dimethyl sulfoxide doping and NaBH4 dedoping. Carbon, 2022, 196, 718-726.	10.3	32
18	Synergistic Effect of Band and Nanostructure Engineering on the Boosted Thermoelectric Performance of n‶ype Mg ₃₊ <i>_δ</i> (Sb, Bi) ₂ Zintls. Advanced Energy Materials, 2022, 12, .	19.5	41

Χιάο-Lei Shi

#	Article	IF	CITATIONS
19	Ni doping and rational annealing boost thermoelectric performance of nanostructured double perovskite Pr1.8Sr0.2CoFeO6. Applied Materials Today, 2022, 29, 101580.	4.3	7
20	Two-dimensional WSe2/SnSe p-n junctions secure ultrahigh thermoelectric performance in n-type Pb/I Co-doped polycrystalline SnSe. Materials Today Physics, 2021, 16, 100306.	6.0	51
21	Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. Nano Energy, 2021, 81, 105683.	16.0	82
22	Wearable fiber-based thermoelectrics from materials to applications. Nano Energy, 2021, 81, 105684.	16.0	92
23	Versatile Vanadium Doping Induces High Thermoelectric Performance in GeTe via Band Alignment and Structural Modulation. Advanced Energy Materials, 2021, 11, 2100544.	19.5	43
24	Hierarchical meso/macro-porous TiO2/graphitic carbon nitride nanofibers with enhanced hydrogen evolution. Materials and Design, 2021, 202, 109542.	7.0	31
25	Rational Electronic and Structural Designs Advance BiCuSeO Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101289.	14.9	48
26	Structural Evolution of Highâ€Performance Mnâ€Alloyed Thermoelectric Materials: A Case Study of SnTe. Small, 2021, 17, e2100525.	10.0	21
27	Flexible thermoelectric materials and devices: From materials to applications. Materials Today, 2021, 46, 62-108.	14.2	206
28	Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4. Journal of Materials Science and Technology, 2021, 83, 102-112.	10.7	66
29	Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications. Progress in Materials Science, 2021, 121, 100840.	32.8	160
30	Synergistic Texturing and Bi/Sbâ€Te Antisite Doping Secure High Thermoelectric Performance in Bi _{0.5} Sb _{1.5} Te ₃ â€Based Thin Films. Advanced Energy Materials, 2021, 11, 2102578.	19.5	35
31	Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization. Nano Energy, 2021, 87, 106171.	16.0	39
32	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. Chemical Engineering Journal, 2021, 425, 130668.	12.7	39
33	Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy and Environmental Science, 2021, 14, 729-764.	30.8	143
34	High Carrier Mobility and High Figure of Merit in the CuBiSe ₂ Alloyed GeTe. Advanced Energy Materials, 2021, 11, 2102913.	19.5	52
35	Environmentally-friendly harvesting TiO2 nanospheres and V2O5 microrods from spent selective catalytic reduction catalysts. Progress in Natural Science: Materials International, 2021, 31, 858-864.	4.4	11
36	Ce Filling Limit and Its Influence on Thermoelectric Performance of Fe3CoSb12-Based Skutterudite Grown by a Temperature Gradient Zone Melting Method. Materials, 2021, 14, 6810.	2.9	3

XIAO-LEI SHI

#	Article	IF	CITATIONS
37	Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction. Chemical Engineering Journal, 2020, 391, 123513.	12.7	108
38	Outstanding thermoelectric properties of solvothermal-synthesized Sn _{1â^{°°}3x} In _x Ag _{2x} Te micro-crystals through defect engineering and band tuning. Journal of Materials Chemistry A, 2020, 8, 3978-3987.	10.3	25
39	Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2-2xTe2xSe. Nano Energy, 2020, 69, 104394.	16.0	45
40	Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn _{1 â^' <i>x</i>} Se via anisotropy and vacancy synergy. InformaÄnÃ-Materiály, 2020, 2, 1201-1215.	17.3	46
41	In situ crystal-amorphous compositing inducing ultrahigh thermoelectric performance of p-type Bi0.5Sb1.5Te3 hybrid thin films. Nano Energy, 2020, 78, 105379.	16.0	23
42	SrTiO3-based thermoelectrics: Progress and challenges. Nano Energy, 2020, 78, 105195.	16.0	127
43	Rational structural design and manipulation advance SnSe thermoelectrics. Materials Horizons, 2020, 7, 3065-3096.	12.2	73
44	Flexible Carbon-Fiber/Semimetal Bi Nanosheet Arrays as Separable and Recyclable Plasmonic Photocatalysts and Photoelectrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 24845-24854.	8.0	161
45	Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications. Nanoscale, 2020, 12, 11936-11946.	5.6	69
46	Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device. Chemical Engineering Journal, 2020, 397, 125360.	12.7	104
47	Tuning wall thickness of TiO2 microtubes for an enhanced photocatalytic activity with thickness-dependent charge separation efficiency. Journal of Colloid and Interface Science, 2020, 579, 463-469.	9.4	25
48	Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020, 120, 7399-7515.	47.7	1,248
49	Morphology and Texture Engineering Enhancing Thermoelectric Performance of Solvothermal Synthesized Ultralarge SnS Microcrystal. ACS Applied Energy Materials, 2020, 3, 2192-2199.	5.1	23
50	Highâ€Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. Advanced Science, 2020, 7, 1902923.	11.2	156
51	High Porosity in Nanostructured <i>n</i> -Type Bi ₂ Te ₃ Obtaining Ultralow Lattice Thermal Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 31237-31244.	8.0	91
52	High-Performance PEDOT:PSS Flexible Thermoelectric Materials and Their Devices by Triple Post-Treatments. Chemistry of Materials, 2019, 31, 5238-5244.	6.7	153
53	<i>In</i> - <i>Situ</i> Observation of the Continuous Phase Transition in Determining the High Thermoelectric Performance of Polycrystalline Sn _{0.98} Se. Journal of Physical Chemistry Letters, 2019, 10, 6512-6517.	4.6	32
54	Anisotropy Control–Induced Unique Anisotropic Thermoelectric Performance in the nâ€Ţype Bi ₂ Te _{2.7} Se _{0.3} Thin Films. Small Methods, 2019, 3, 1900582.	8.6	58

Χιάο-Lei Shi

#	Article	IF	CITATIONS
55	Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering. Nano Energy, 2019, 65, 104056.	16.0	116
56	Super Large Sn _{1–<i>x</i>} Se Single Crystals with Excellent Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 8051-8059.	8.0	43
57	Solvothermal synthesis of high-purity porous Cu1.7Se approaching low lattice thermal conductivity. Chemical Engineering Journal, 2019, 375, 121996.	12.7	28
58	Effectively restricting MnSi precipitates for simultaneously enhancing the Seebeck coefficient and electrical conductivity in higher manganese silicide. Journal of Materials Chemistry C, 2019, 7, 7212-7218.	5.5	8
59	Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Advanced Materials, 2019, 31, e1807916.	21.0	419
60	Enhancing Thermoelectric Properties of InTe Nanoprecipitate-Embedded Sn _{1–<i>x</i>} In _{<i>x</i>} Te Microcrystals through Anharmonicity and Strain Engineering. ACS Applied Energy Materials, 2019, 2, 2965-2971.	5.1	43
61	Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-friendly Cu _{2â"x} S. Journal of Materials Chemistry C, 2019, 7, 5366-5373.	5.5	29
62	High Thermoelectric Performance in Sintered Octahedron-Shaped Sn(Cdln) _{<i>x</i>} Te _{1+2<i>x</i>} Microcrystals. ACS Applied Materials & Interfaces, 2018, 10, 38944-38952.	8.0	31
63	Realizing High Thermoelectric Performance in nâ€Type Highly Distorted Sbâ€Doped SnSe Microplates via Tuning High Electron Concentration and Inducing Intensive Crystal Defects. Advanced Energy Materials, 2018, 8, 1800775.	19.5	120