
Scott Elliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11075180/publications.pdf Version: 2024-02-01

SCOTT FLUOTT

#	Article	IF	CITATIONS
1	Modeling Functional Organic Chemistry in Arctic Rivers: An Idealized Siberian System. Atmosphere, 2020, 11, 1090.	2.3	1
2	Biogeochemical Equation of State for the Sea-Air Interface. Atmosphere, 2019, 10, 230.	2.3	7
3	Effects of Model Resolution and Ocean Mixing on Forced Iceâ€Ocean Physical and Biogeochemical Simulations Using Clobal and Regional System Models. Journal of Geophysical Research: Oceans, 2018, 123, 358-377.	2.6	16
4	Evaluating Uncertainties in Marine Biogeochemical Models: Benchmarking Aerosol Precursors. Atmosphere, 2018, 9, 184.	2.3	4
5	Climate Change Impacts on Natural Sulfur Production: Ocean Acidification and Community Shifts. Atmosphere, 2018, 9, 167.	2.3	7
6	Does Marine Surface Tension Have Global Biogeography? Addition for the OCEANFILMS Package. Atmosphere, 2018, 9, 216.	2.3	10
7	Influence of dimethyl sulfide on the carbon cycle and biological production. Biogeochemistry, 2018, 138, 49-68.	3.5	35
8	Strategies for the Simulation of Sea Ice Organic Chemistry: Arctic Tests and Development. Geosciences (Switzerland), 2017, 7, 52.	2.2	2
9	Influence of explicit <i>Phaeocystis</i> parameterizations on the global distribution of marine dimethyl sulfide. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2158-2177.	3.0	55
10	Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry. Biogeochemistry, 2015, 126, 25-56.	3.5	15
11	What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. Journal of Geophysical Research, 2012, 117, .	3.3	117
12	Investigation of Arctic sea ice and ocean primary production for the period 1992–2007 using a 3-D global ice–ocean ecosystem model. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84, 28-35.	1.4	65
13	Changes in dimethyl sulfide oceanic distribution due to climate change. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	69
14	Largeâ€scale modeling of primary production and ice algal biomass within arctic sea ice in 1992. Journal of Geophysical Research, 2011, 116, .	3.3	59
15	A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Global Biogeochemical Cycles, 2010, 24, .	4.9	50
16	Dependence of DMS global seaâ€air flux distribution on transfer velocity and concentration field type. Journal of Geophysical Research, 2009, 114, .	3.3	47
17	Ecodynamic and Eddy-Admitting Dimethyl Sulfide Simulations in a Global Ocean Biogeochemistry/Circulation Model. Earth Interactions, 2004, 8, 1-25.	1.5	4
18	BIBLE A whole-air sampling as a window on Asian biogeochemistry. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	4

SCOTT ELLIOTT

#	Article	IF	CITATIONS
19	Comment on "Ocean fertilization experiments may initiate a large scale phytoplankton bloom―by Z. Neufeld et al Geophysical Research Letters, 2003, 30, .	4.0	1
20	Global eddy permitting simulations of surface ocean nitrogen, iron, sulfur cycling. Chemosphere, 2003, 50, 223-235.	8.2	35
21	Chemistry in next-generation rocket plume models. Combustion Science and Technology, 2003, 175, 1179-1210.	2.3	0
22	Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico. Environmental Science and Policy, 2002, 5, 449-461.	4.9	13
23	Title is missing!. Journal of Atmospheric Chemistry, 2001, 40, 305-333.	3.2	4
24	<title>Eddy resolving nutrient ecodynamics in the global Parallel Ocean Program and connections with trace gases in the sulfur, halogen, and NMHC cycles</title> . , 2000, , .		0
25	ENERGY ANDMATERIALFLOWTHROUGH THEURBANECOSYSTEM. Annual Review of Environment and Resources, 2000, 25, 685-740.	1.2	302
26	Ecodynamics and dissolved gas chemistry routines for ocean circulation models. Computers & Chemistry, 1999, 23, 447-467.	1.2	6
27	Fueling Asian modernization. Environmental Science and Policy, 1999, 2, 5-8.	4.9	3
28	Ventilation of liquefied petroleum gas components from the Valley of Mexico. Journal of Geophysical Research, 1997, 102, 21197-21207.	3.3	16
29	Motorization of China implies changes in Pacific air chemistry and primary production. Geophysical Research Letters, 1997, 24, 2671-2674.	4.0	54
30	Aerosol-induced chemical perturbations of stratospheric ozone: Three-dimensional simulations and analysis of mechanisms. Journal of Geophysical Research, 1997, 102, 3617-3637.	3.3	17
31	Title is missing!. Journal of Atmospheric Chemistry, 1997, 27, 31-70.	3.2	21
32	Numerical simulation of the dynamical response of the Arctic Vortex to Aerosol-associated chemical perturbations in the lower stratosphere. Geophysical Research Letters, 1996, 23, 1525-1528.	4.0	10
33	Free tropospheric ozone production after deep convection of dispersing tropical urban plumes. Atmospheric Environment, 1996, 30, 4263-4274.	4.1	4
34	A streamlined family photochemistry module reproduces major nonlinearities in the global tropospheric ozone system. Computers & Chemistry, 1996, 20, 235-259.	1.2	6
35	Photochemical Numerics for Global-Scale Modeling: Fidelity and GCM Testing. Journal of Applied Meteorology and Climatology, 1995, 34, 694-718.	1.7	9
36	Methyl halide hydrolysis rates in natural waters. Journal of Atmospheric Chemistry, 1995, 20, 229-236.	3.2	58

SCOTT ELLIOTT

#	Article	IF	CITATIONS
37	Influence of the heterogeneous reaction HCl + HOCl on an ozone hole model with hydrocarbon additions. Journal of Geophysical Research, 1994, 99, 3497.	3.3	10
38	Tests on combined projection/forward differencing integration for stiff photochemical family systems at long time step. Computers & Chemistry, 1993, 17, 91-102.	1.2	44
39	Nucleophilic substitution rates and solubilities for methyl halides in seawater. Geophysical Research Letters, 1993, 20, 1043-1046.	4.0	122
40	Global environmental engineering. Nature, 1992, 356, 472-472.	27.8	13
41	Application of physical adsorption thermodynamics to heterogeneous chemistry on polar stratospheric clouds. Journal of Atmospheric Chemistry, 1991, 13, 211-224.	3.2	26
42	The effect of metal complexation on hydrogen sulfide transport across the sea-air interface. Journal of Atmospheric Chemistry, 1990, 10, 315-327.	3.2	7
43	Incorporation of stratospheric acids into water ice. Geophysical Research Letters, 1990, 17, 425-428.	4.0	19
44	Hydrogen Sulfides in Oxic Seawater. ACS Symposium Series, 1989, , 314-327.	0.5	4
45	Rates and mechanisms for the hydrolysis of carbonyl sulfide in natural waters. Environmental Science & Technology, 1989, 23, 458-461.	10.0	103
46	Linear free energy techniques for estimation of metal sulfide complexation constants. Marine Chemistry, 1988, 24, 203-213.	2.3	33
47	Comment on "Further interpretation of satellite measurements of Antarctic total ozoneâ€. Geophysical Research Letters, 1988, 15, 196-197.	4.0	1
48	Carbonyl sulfide hydrolysis as a source of hydrogen sulfide in open ocean seawater. Geophysical Research Letters, 1987, 14, 131-134.	4.0	51